扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
Probability Theory:An Elementary Course 版权信息
- ISBN:9787308198790
- 条形码:9787308198790 ; 978-7-308-19879-0
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>
Probability Theory:An Elementary Course 内容简介
本书系浙江大学出版社版的《概率论》教材的配套英文教材, 内容主要包括四大部分: 一、随机事件及其概率 ; 二、随机变量和分布函数 ; 三、数字特征 ; 四、极限定理。通过学习, 使学生掌握概率论的基本概念和主要结果, 了解定量地处理随机现象的基本思想, 了解它在其它学科和实际部门的广泛应用, 也为学习数理统计等后续课程奠定基础。
Probability Theory:An Elementary Course 目录
Chapter 1 Events and Probabilities
1.1 Random phenomena and statistical regularity
1.1.1 Random phenomena
1.1.2 The statistical definition of probability
1.2 Classical probability models
1.2.1 Sample points and sample spaces
1.2.2 Discrete probability models
1.2.3 Geometric probability models
1.3 The axiomatic definition of probability
1.3.1 Events
1.3.2 Probability space
1.3.3 Continuity of probability measure
1.4 Conditional probability and independent events
1.4.1 Conditional probability
1.4.2 Total probability formula and Bayes' rule
1.4.3 Independent events
Chapter 2 Random Variables and Distribution Functions
2.1 Discrete random variables
2.1.1 The concept of random variables
2.1.2 Discrete random variables
2.2 Distribution functions and continuous random variables
2.2.1 Distribution functions
2.2.2 Continuous random variables and density functions
2.2.3 Typical continuous random variables
2.3 Random vectors
2.3.1 Discrete random vectors
2.3.2 Joint distribution functions
2.3.3 Continuous random vectors
2.4 Independence of random variables
2.5 Conditional distribution
2.5.1 Discrete case
2.5.2 Continuous case
2.5.3 The general case
2.5.4 The conditional probability given a random variable
2.6 Functions of random variables
2.6.1 Functions of discrete random variables
2.6.2 Functions of continuous random variables
2.6.3 Functions of continuous random vectors
2.6.4 Transforms of random vectors
2.6.5 Important distributions in statistics
Chapter 3 Numerical Characteristics and Characteristic Functions
3.1 Mathematical expectations
3.1.1 Expectations of discrete random variables
3.1.2 Expectations of continuous random variables
3.1.3 General definition
3.1.4 Expectations of functions of random variables
3.1.5 Basic properties of expectations
3.1.6 Conditional expectation
3.2 Variances, covariances and correlation coefficients
3.2.1 Variances
3.2.2 Covariances
3.2.3 Correlation coefficients
3.2.4 Moments
3.3 Characteristic functions
3.3.1 Definitions
3.3.2 Properties
3.3.3 Inverse formula and uniqueness theorem
3.3.4 Additivity of distribution functions
3.3.5 Multivariate characteristic functions
3.4 Multivariate normal distributions
3.4.1 Density functions and characteristic functions
3.4.2 Properties
Chapter 4 Probability Limit Theorems
4.1 Convergence in distribution and central limit theorems
4.1.1 Weak convergence of distribution functions
4.1.2 Central limit theorems
4.2 Convergence in probability and weak law of large numbers
4.2.1 Convergence in probability
4.2.2 Weak law of large numbers
4.3 Almost sure convergence and strong laws of large numbers
4.3.1 Almost sure convergence
4.3.2 Strong laws of large numbers
Bibliography
Appendix A Distribution of Typical Random Variables
A.1 Distribution of Typical Random Variables
A.2 Distributions of Typical Random Variables
Appendix B Tables
B.1 Table of Binomial Probabilities
B.2 Table of Random Digits
B.3 Table of Poisson Probabilities
B.4 Table of Standard Normal Distribution Function
B.5 Table of X2 Distribution
B.6 Table of t Distribution
1.1 Random phenomena and statistical regularity
1.1.1 Random phenomena
1.1.2 The statistical definition of probability
1.2 Classical probability models
1.2.1 Sample points and sample spaces
1.2.2 Discrete probability models
1.2.3 Geometric probability models
1.3 The axiomatic definition of probability
1.3.1 Events
1.3.2 Probability space
1.3.3 Continuity of probability measure
1.4 Conditional probability and independent events
1.4.1 Conditional probability
1.4.2 Total probability formula and Bayes' rule
1.4.3 Independent events
Chapter 2 Random Variables and Distribution Functions
2.1 Discrete random variables
2.1.1 The concept of random variables
2.1.2 Discrete random variables
2.2 Distribution functions and continuous random variables
2.2.1 Distribution functions
2.2.2 Continuous random variables and density functions
2.2.3 Typical continuous random variables
2.3 Random vectors
2.3.1 Discrete random vectors
2.3.2 Joint distribution functions
2.3.3 Continuous random vectors
2.4 Independence of random variables
2.5 Conditional distribution
2.5.1 Discrete case
2.5.2 Continuous case
2.5.3 The general case
2.5.4 The conditional probability given a random variable
2.6 Functions of random variables
2.6.1 Functions of discrete random variables
2.6.2 Functions of continuous random variables
2.6.3 Functions of continuous random vectors
2.6.4 Transforms of random vectors
2.6.5 Important distributions in statistics
Chapter 3 Numerical Characteristics and Characteristic Functions
3.1 Mathematical expectations
3.1.1 Expectations of discrete random variables
3.1.2 Expectations of continuous random variables
3.1.3 General definition
3.1.4 Expectations of functions of random variables
3.1.5 Basic properties of expectations
3.1.6 Conditional expectation
3.2 Variances, covariances and correlation coefficients
3.2.1 Variances
3.2.2 Covariances
3.2.3 Correlation coefficients
3.2.4 Moments
3.3 Characteristic functions
3.3.1 Definitions
3.3.2 Properties
3.3.3 Inverse formula and uniqueness theorem
3.3.4 Additivity of distribution functions
3.3.5 Multivariate characteristic functions
3.4 Multivariate normal distributions
3.4.1 Density functions and characteristic functions
3.4.2 Properties
Chapter 4 Probability Limit Theorems
4.1 Convergence in distribution and central limit theorems
4.1.1 Weak convergence of distribution functions
4.1.2 Central limit theorems
4.2 Convergence in probability and weak law of large numbers
4.2.1 Convergence in probability
4.2.2 Weak law of large numbers
4.3 Almost sure convergence and strong laws of large numbers
4.3.1 Almost sure convergence
4.3.2 Strong laws of large numbers
Bibliography
Appendix A Distribution of Typical Random Variables
A.1 Distribution of Typical Random Variables
A.2 Distributions of Typical Random Variables
Appendix B Tables
B.1 Table of Binomial Probabilities
B.2 Table of Random Digits
B.3 Table of Poisson Probabilities
B.4 Table of Standard Normal Distribution Function
B.5 Table of X2 Distribution
B.6 Table of t Distribution
展开全部
书友推荐
- >
罗庸西南联大授课录
罗庸西南联大授课录
¥13.8¥32.0 - >
姑妈的宝刀
姑妈的宝刀
¥13.5¥30.0 - >
回忆爱玛侬
回忆爱玛侬
¥9.8¥32.8 - >
巴金-再思录
巴金-再思录
¥14.7¥46.0 - >
月亮虎
月亮虎
¥14.4¥48.0 - >
史学评论
史学评论
¥23.2¥42.0 - >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥6.3¥14.0 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥36.0¥48.0
本类畅销
-
普林斯顿微积分读本-(修订版)
¥69.3¥99 -
怎样解题
¥17.2¥29 -
数学-应用与思考
¥16.1¥32.8 -
高等代数思想方法分析及应用研究
¥25.3¥76 -
高等代数典型问题研究与实例探析
¥30.4¥92 -
数字唬人:用常识看穿无所不在的数字陷阱
¥16¥36.8