书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
Python深度学习算法实践(影印版)

Python深度学习算法实践(影印版)

出版社:东南大学出版社出版时间:2020-07-01
开本: 其他 页数: 494
中 图 价:¥89.3(7.5折) 定价  ¥119.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Python深度学习算法实践(影印版) 版权信息

  • ISBN:9787564189693
  • 条形码:9787564189693 ; 978-7-5641-8969-3
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

Python深度学习算法实践(影印版) 内容简介

本书深入浅出地剖析了深度学习的原理和相关技术。书中使用Python,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。

Python深度学习算法实践(影印版) 目录

Preface Section 1" Getting Started with Deep Learning Chapter 1: Introduction to Deep Learning What is deep learning? Biological and artificial neurons ANN and its layers Input layer Hidden layer Output layer Exploring activation functions The sigmoid function The tanh function The Rectified Linear Unit function The leaky ReLU function The Exponential linear unit function The Swish function The softmax function Forward propagation in ANN How does ANN learn? Debugging gradient descent with gradient checking Putting it all together Building a neural network from scratch Summary Questions Further reading Chapter 2: Getting to Know TensorFIow What is TensorFIow? Understanding computational graphs and sessions Sessions Variables, constants, and placeholders Variables Constants Placeholders and feed dictionaries Introducing TensorBoard Creating a name scope Handwritten digit classification using TensorFIow Importing the required libraries Loading the dataset Defining the number of neurons in each layer Defining placeholders Forward propagation Computing loss and backpropagation Computing accuracy Creating summary Training the model Visualizing graphs in TensorBoard Introducing eager execution Math operations in TensorFIow TensorFIow 2.0 and Keras Bonjour Keras Defining the model Defining a sequential model Defining a functional model Compiling the model Training the model Evaluating the model MNIST digit classification using TensorFIow 2.0 Should we use Keras or TensorFIow? Summary Questions Further reading Section 2: Fundamental Deep Learning Algorithms Chapter 3: Gradient Descent and Its Variants Demystifying gradient descent Performing gradient descent in regression " Importing the libraries Preparing the dataset Defining the loss function Computing the gradients of the loss function Updating the model parameters Gradient descent versus stochastic gradient descent Momentum-based gradient descent Gradient descent with momentum Nesterov accelerated gradient Adaptive methods of gradient descent Setting a learning rate adaptively using Adagrad Doing away with the learning rate using Adadelta Overcoming the limitations of Adagrad using RMSProp Adaptive moment estimation Adamax - Adam based on infinity-norm Adaptive moment estimation with AMSGrad …… Section 3 Advanced Deep Learning Algorithms
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服