书馨卡帮你省薪
欢迎光临中图网 请 | 注册
> >
大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib

出版社:清华大学出版社出版时间:2020-06-01
开本: 其他 页数: 512
中 图 价:¥148.5(7.5折) 定价  ¥198.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib 版权信息

  • ISBN:9787302552802
  • 条形码:9787302552802 ; 978-7-302-55280-2
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib 本书特色

图书特色 ◆ 使用NumPy处理数组和矩阵 ◆ 使用matplotlib绘图和可视化数据 ◆ 使用Pandas和SciPy进行数据分析 ◆ 使用statsmodels和scikit-learn进行统计 建模和机器学习 ◆ 使用Numba和Cython优化Python代码

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib 内容简介

《Python科学计算和数据科学应用(第2版) 使用NumPy、SciPy和matplotlib》全面介绍Python在数值计算和数学领域的模块、标准库以及多个开源Python库,如NumPy、SciPy、FiPy、matplotlib等。在上一版的基础上,本书做了全面修订,更新了每个包的更新细节以及Jupyter项目的变化,演示了数值计算和数学建模在大数据、云计算、金融工程、商业管理等领域的应用。     本书提供了Python在数据科学和统计分析中很多新的应用示例,对上一版中的示例进行了扩展,每个示例都充分展示了Python的简洁语法及其数据分析方法在快速开发和探索性计算方面的强大功能。     通过阅读本书,读者将熟悉很多计算技术,包括基于数组的计算和符号计算、数据可视化和数值文件读写、方程求解、优化、插值和积分以及特定领域的计算问题,如微分方程求解、数据分析、统计建模和机器学习等。

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib 目录

目 录

第1章 科学计算介绍 1

1.1 Python数值计算环境 3

1.2 Python 4

1.3 IPython控制台 5

1.3.1 输入输出缓存 6

1.3.2 自动补全和对象自省(Object Introspection) 6

1.3.3 文档 7

1.3.4 与系统shell进行交互 7

1.3.5 IPython扩展 8

1.4 Jupyter 13

1.4.1 Jupyter QtConsole 13

1.4.2 Jupyter Notebook 14

1.4.3 Jupyter Lab 16

1.4.4 单元类型 16

1.4.5 编辑单元 17

1.4.6 Markdown单元 18

1.4.7 输出显示 19

1.4.8 nbconvert 22

1.5 Spyder集成开发环境 24

1.5.1 源代码编辑器 25

1.5.2 Spyder控制台 26

1.5.3 对象查看器 26

1.6 本章小结 26

1.7 扩展阅读 27

1.8 参考文献 27

第2章 向量、矩阵和多维数组 29

2.1 导入模块 30

2.2 NumPy Array对象 30

2.2.1 数据类型 31

2.2.2 内存中数组数据的顺序 33

2.3 创建数组 34

2.3.1 从列表和其他类数组对象创建数组 35

2.3.2 以常量填充的数组 35

2.3.3 以增量序列填充的数组 36

2.3.4 以等比数列填充的数组 37

2.3.5 Meshgrid数组 37

2.3.6 创建未初始化的数组 38

2.3.7 使用其他数组的属性创建数组 38

2.3.8 创建矩阵数组 38

2.4 索引和切片 39

2.4.1 一维数组 39

2.4.2 多维数组 41

2.4.3 视图 42

2.4.4 花式索引和布尔索引 43

2.5 调整形状和大小 45

2.6 向量化表达式 48

2.6.1 算术运算 49

2.6.2 逐个元素进行操作的函数 52

2.6.3 聚合函数 54

2.6.4 布尔数组和条件表达式 56

2.6.5 集合运算 59

2.6.6 数组运算 60

2.7 矩阵和向量运算 61

2.8 本章小结 66

2.9 扩展阅读 66

2.10 参考文献 66

第3章 符号计算 67

3.1 导入SymPy 67

3.2 符号 68

3.3 表达式 74

3.4 表达式操作 76

3.4.1 化简 76

3.4.2 展开 77

3.4.3 因式分解、合并同类项 78

3.4.4 分式分解、通分、消除公因子 79

3.4.5 替换 79

3.5 数值计算 80

3.6 微积分 81

3.6.1 导数 81

3.6.2 积分 83

3.6.3 级数展开 85

3.6.4 极限 86

3.6.5 和与积 87

3.7 方程 88

3.8 线性代数 89

3.9 本章小结 92

3.10 扩展阅读 93

3.11 参考文献 93

第4章 绘图和可视化 95

4.1 导入模块 96

4.2 入门 96

4.3 Figure对象 101

4.4 Axes实例 102

4.4.1 绘图类型 103

4.4.2 线条属性 103

4.4.3 图例 107

4.4.4 文本格式和注释 108

4.4.5 轴属性 110

4.5 Axes高级布局 119

4.5.1 图中图 119

4.5.2 plt.subplots 121

4.5.3 plt.subplot2grid 123

4.5.4 GridSpec 123

4.6 绘制色图 124

4.7 绘制3D图形 126

4.8 本章小结 128

4.9 扩展阅读 128

4.10 参考文献 129

第5章 方程求解 131

5.1 导入模块 131

5.2 线性方程组 132

5.2.1 方形方程组 133

5.2.2 矩形方程组 137

5.3 特征值问题 141

5.4 非线性方程 142

5.4.1 单变量方程 142

5.4.2 非线性方程组 149

5.5 本章小结 152

5.6 扩展阅读 152

5.7 参考文献 153

第6章 优化 155

6.1 导入模块 155

6.2 优化问题的分类 156

6.3 单变量优化 158

6.4 无约束的多变量优化问题 160

6.5 非线性*小二乘问题 167

6.6 受约束的优化问题 168

6.7 本章小结 175

6.8 扩展阅读 175

6.9 参考文献 176

第7章 插值 177

7.1 导入模块 177

7.2 插值概述 178

7.3 多项式 179

7.4 多项式插值 181

7.5 样条插值 185

7.6 多变量插值 188

7.7 本章小结 193

7.8 扩展阅读 193

7.9 参考文献 193

第8章 积分 195

8.1 导入模块 196

8.2 数值积分方法 196

8.3 使用SciPy进行数值积分 199

8.4 多重积分 204

8.5 符号积分和任意精度积分 208

8.6 积分变换 211

8.7 本章小结 214

8.8 扩展阅读 214

8.9 参考文献 214

第9章 常微分方程 215

9.1 导入模块 215

9.2 常微分方程 216

9.3 使用符号方法求解ODE 217

9.3.1 方向场 222

9.3.2 使用拉普拉斯变换求解ODE 225

9.4 数值法求解ODE 228

9.5 使用SciPy对ODE进行

数值积分 231

9.6 本章小结 242

9.7 扩展阅读 242

9.8 参考文献 243

第10章 稀疏矩阵和图 245

10.1 导入模块 245

10.2 SciPy中的稀疏矩阵 246

10.2.1 创建稀疏矩阵的函数 250

10.2.2 稀疏线性代数函数 252

10.2.3 线性方程组 252

10.2.4 图和网络 257

10.3 本章小结 264

10.4 扩展阅读 264

10.5 参考文献 264

第11章 偏微分方程 265

11.1 导入模块 266

11.2 偏微分方程 266

11.3 有限差分法 267

11.4 有限元法 272

11.5 使用FEniCS求解PDE 275

11.6 本章小结 293

11.7 扩展阅读 294

11.8 参考文献 294

第12章 数据处理和分析 295

12.1 导入模块 296

12.2 Pandas介绍 296

12.2.1 Series对象 296

12.2.2 DataFrame对象 299

12.2.3 时间序列 307

12.3 Seaborn图形库 317

12.4 本章小结 321

12.5 扩展阅读 322

12.6 参考文献 322

第13章 统计 323

13.1 导入模块 323

13.2 概率统计回顾 324

13.3 随机数 325

13.4 随机变量及其分布 328

13.5 假设检验 335

13.6 非参数法 339

13.7 本章小结 341

13.8 扩展阅读 341

13.9 参考文献 341

第14章 统计建模 343

14.1 导入模块 344

14.2 统计建模简介 344

14.3 使用Patsy定义统计模型 345

14.4 线性回归 352

14.5 离散回归 360

14.5.1 对数几率回归 361

14.5.2 泊松回归模型 365

14.6 时间序列 368

14.7 本章小结 372

14.8 扩展阅读 372

14.9 参考文献 372

第15章 机器学习 373

15.1 导入模块 374

15.2 机器学习回顾 374

15.3 回归 375

15.4 分类 384

15.5 聚类 388

15.6 本章小结 391

15.7 扩展阅读 392

15.8 参考文献 392

第16章 贝叶斯统计 393

16.1 导入模块 394

16.2 贝叶斯统计简介 394

16.3 定义模型 396

16.3.1 后验分布采样 400

16.3.2 线性回归 403

16.4 本章小结 413

16.5 扩展阅读 413

16.6 参考文献 413

第17章 信号处理 415

17.1 导入模块 415

17.2 频谱分析 416

17.2.1 傅里叶变换 416

17.2.2 加窗 421

17.2.3 频谱图 424

17.3 信号滤波器 427

17.3.1 卷积滤波器 428

17.3.2 FIR和IIR滤波器 429

17.4 本章小结 434

17.5 扩展阅读 434

17.6 参考文献 434

第18章 数据的输入输出 435

18.1 导入模块 436

18.2 CSV格式 436

18.3 HDF5 440

18.3.1 h5py库 441

18.3.2 PyTables库 451

18.3.3 Pandas HDFStore 455

18.4 JSON 456

18.5 序列化 460

18.6 本章小结 462

18.7 扩展阅读 462

18.8 参考文献 463

第19章 代码优化 465

19.1 导入模块 467

19.2 Numba 467

19.3 Cython 473

19.4 本章小结 482

19.5 扩展阅读 483

19.6 参考文献 483

附录 安装 485


展开全部

大数据应用与技术丛书Python科学计算和数据科学应用(第2版) 使用NumPy,SciPy和matplotlib 作者简介

作者简介 Robert Johansson是一位经验丰富的Python程序员和计算科学家,他拥有瑞典查尔斯理工大学理论物理学博士学位。他在学术界和工业界从事科学计算工作超过10年,既参与过开源项目的开发,也做过专有性研究项目的开发。在开源领域,他为QuTip项目做出了很多贡献,QuTip项目是一个很流行的用于模拟量子系统动力学的Python框架,他还为科学计算领域的其他几个Python库做出过贡献。Robert对科学计算和软件开发充满热情,并热衷于传授和交流这方面的最佳实践,以便能在这些领域取得最好的成果:新颖的、可重现的、可扩展的计算结果。Robert在理论物理和计算物理领域有5年的研究背景,目前他是IT行业的数据科学家。 译者简介 黄强,本科和硕士分别毕业于中山大学和中国科学院研究生院,目前在一家国有银行从事信息科技方面的工作。对信息技术的前沿发展及应用有着浓厚的兴趣,包括云计算、人工智能、金融科技等,翻译过多本技术专著。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服