超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
Advanced liquid metal cooling for chip, device and system

Advanced liquid metal cooling for chip, device and system

作者:Liu jing[著]
出版社:上海科学技术出版社出版时间:2020-01-01
开本: 25cm 页数: 12,660页
本类榜单:自然科学销量榜
中 图 价:¥358.8(6.0折) 定价  ¥598.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Advanced liquid metal cooling for chip, device and system 版权信息

Advanced liquid metal cooling for chip, device and system 本书特色

随着微纳电子技术的飞速发展,高集成度芯片、光电器件与系统等引发的热障问题,已成为制约其可持续发展的关键瓶颈。这种发展瓶颈对先进散热技术提出了前所未有的要求。在这种背景下,本书作者于2001年前后首次在芯片冷却领域引入具有通用性的液态金属散热技术,随后在国内外引发重大反响和后续大量研究,成为近年来该领域内前沿热点和极具应用前景的重大发展方向之一。影响范围甚广,正为能源、电子信息、先进制造、国防军事等领域的发展带来颠覆性变革,并将催生出一系列战略性新兴产业。 为推动这一新兴学科领域的可持续健康发展,本书作者将其十七八年的研究成果系统梳理和总结,编撰成本专著。本书系统围绕液态金属散热技术,集中阐述了其中涉及的新方法、新原理与典型应用,基本涵盖了液态金属芯片散热领域中的所有重大主题,包括:液态金属的基础热物理特性、流动特性、材料相容性、驱动方法、传热特性、微通道散热技术、相变热控技术以及一些实际器件的应用等方面,学科领域跨度大,内容崭新,系国内外该领域首部著作,是一本兼具理论学术意义和实际参考价值的学术著作。以英文版推出,是为了更好地将中国原创科研成果推向国际,因此,具有非常及时和重要的出版价值。

Advanced liquid metal cooling for chip, device and system 内容简介

随着微纳电子技术的飞速发展,高集成度芯片、光电器件与系统等引发的热障问题,已成为制约其可持续发展的关键瓶颈。这种发展瓶颈对先进散热技术提出了前所未有的要求。在这种背景下,本书作者于2001年前后首次在芯片冷却领域引入具有通用性的液态金属散热技术,随后在国内外引发重大反响和后续大量研究,成为近年来该领域内前沿热点和极具应用前景的重大发展方向之一。影响范围甚广,正为能源、电子信息、先进制造、国防军事等领域的发展带来颠覆性变革,并将催生出一系列战略性新兴产业。 为推动这一新兴学科领域的可持续健康发展,本书作者将其十七八年的研究成果系统梳理和总结,编撰成本专著。本书系统围绕液态金属散热技术,集中阐述了其中涉及的新方法、新原理与典型应用,基本涵盖了液态金属芯片散热领域中的所有重大主题,包括:液态金属的基础热物理特性、流动特性、材料相容性、驱动方法、传热特性、微通道散热技术、相变热控技术以及一些实际器件的应用等方面,学科领域跨度大,内容崭新,系国内外该领域首部著作,是一本兼具理论学术意义和实际参考价值的学术著作。以英文版推出,是为了更好地将中国原创科研成果推向国际,因此,具有非常及时和重要的出版价值。

Advanced liquid metal cooling for chip, device and system 目录

Chapter 1Introduction1 1.1Increasing Challenges in Advanced Cooling2
1.2Water Cooling and New Alternatives4
1.3Basic Features of Conventional Heat Exchangers6
1.3.1Heat Exchanger Classification by Geometry and
Structure7
1.3.2Heat Exchange Enhancement Techniques12
1.4Limitations of Waterbased Heat Exchanger13
1.4.1Overall Properties of Water13
1.4.2Adhesion and Cohesion14
1.4.3Surface Tension14
1.4.4Specific Heat14
1.4.5Conductivity15
1.5Liquid Metal Coolant for Chip Cooling15
1.6Some Facts about Liquid Metal17
1.7Revisit of Traditional Liquid Metal Cooling19
1.8Liquid Metal Enabled Innovation on Conventional
Heat Exchanger22
1.9Potential Application Areas of Liquid Metal Thermal
Management 23
1.9.1Chip Cooling23
1.9.2Heat Recovery25
1.9.3Energy System27
1.9.4Heat Transfer Process Engineering28
1.9.5Aerospace Exploration28
1.9.6Appliances in Large Power Systems29
1.9.7Thermal Interface Material29
1.9.8More New Conceptual Applications31
1.10Technical and Scientific Challenges in Liquid Metal
Heat Transfer 32
1.11Conclusion35
References36
Chapter 2Typical Liquid Metal Medium and Properties for Advanced
Cooling44 2.1Typical Properties of Liquid Metals45
2.1.1Low Melting Point45
2.1.2Thermal Conductivity45
2.1.3Surface Tension48
2.1.4Heat Capacity49
2.1.5Boiling Temperature50
2.1.6Subcooling Point50
2.1.7Viscosity51
2.1.8Electrical Properties52
2.1.9Magnetic Properties52
2.1.10Chemical Properties52
2.2Alloy Candidates with Low Melting Point53
2.2.1Overview53
2.2.2GaIn Alloy53
2.2.3NaK Alloy55
2.2.4Woods Metal55
2.3Nano Liquid Metal as More Conductive Coolant or Grease55
2.3.1Technical Concept of Nano Liquid Metal55
2.3.2Performance of Typical Nano Liquid Metals56
2.4Liquid Metal Genome towards New Material Discovery61
2.4.1About Liquid Metal Material Genome61
2.4.2Urgent Needs on New Liquid Metals62
2.4.3Category of Room Temperature Liquid Metal Genome62
2.5Fundamental Routes toward Finding New Liquid Metal Materials64
2.5.1Alloying Strategy from Single Metal Element64
2.5.2Making Composite from Binary Liquid Alloys65
2.5.3Realizing Composite from Multicomponent Liquid Alloys66
2.5.4Nano Technological Strategies66
2.5.5Additional Physical Approaches66
2.5.6Chemical Strategies67
2.6Fundamental Theories for Material Discovery68
2.6.1Calculation of Phase Diagram (CALPHAD)68
2.6.2First Principle Prediction69
2.6.3Molecular Dynamics Simulation69
2.6.4Other Theoretical Methods70
2.7Experimental Ways for Material Discovery70
2.8Theoretical and Technical Challenges71
2.9Conclusion73
References73Chapter 3Fabrications and Characterizations of Liquid Metal Cooling
Materials80
3.1Preparation Methods81
3.1.1Alloying81
3.1.2Oxidizing81
3.1.3Fabrication of Liquid Metal Droplets82
3.1.4Preparation of Liquid Metal Nano Particles83
3.1.5Coating of Liquid Metal Surface84
3.1.6Loading with Nano Materials86
3.1.7Compositing with Other Materials87
3.2Characterizations of Functional Liquid Metal Materials87
3.2.1Regulation of Thermal Properties88
3.2.2Regulation of Electrical Properties88
3.2.3Regulation of Magnetic Properties89
3.2.4Regulation of Fluidic Properties89
3.2.5Regulation of Chemical Properties89
3.3Liquid Metal as Energy Harvesting or Conversion Medium90
3.4Low Temperature Liquid Metal Used in Harsh Environment91
3.4.1Working of Liquid Metal under Cryogenic Situation91
3.4.2Basics about Cryogenic Cooling92
3.5Potential Metal Candidates with Melting Point below Zero
Centigrade 94
3.5.1Mercury95
3.5.2Particularities of Gallium or Its alloys96
3.5.3Alkali Metal and Its Alloys97
3.6Ways to Make Low Temperature Liquid Metal100
3.6.1Phase Diagram Calculation101
3.6.2Subcooling of Metal Melt102
3.6.3Experimental Approaches104
3.7Potential Roles for Future Low Temperature Liquid Metal105
3.8Conclusion107
References107Chapter 4Corrosion Issues in Liquid Metalbased Thermal Management114
4.1Corrosions Caused by Liquid Metal on Specific Substrates115
4.2Characterization of Liquid Metal Corrosion116
4.3Corrosion Trends of Typical Substrates with Liquid Gallium117
4.4Microscopic SEM/EDS Observation and Analysis119
4.4.1SEM Quantification of Corroded Surface119
4.4.2EDS Quantification of Corroded Surface120
4.4.3EDS Quantification of Corroded Crosssection123
4.5Factors Affecting the Liquid Metal Corrosion124
4.6Anticorrosion of Liquid Metal on Substrate126
4.7Quantification of Gallium Alloy on AOA128
4.7.1Thermal Transfer Simulation and Setting of Anodized
Aluminum Alloy128
4.7.2Thermal Transfer Performance130
4.7.3Corrosion Resistance of Anodized Aluminum Alloy131
4.8Conclusion132
References133Chapter 5Nano Liquid Metal towards Making Enhanced Materials135
5.1Typical Features of Nano Liquid Metals136
5.2Application Issues of Nano Liquid Metals137
5.2.1Energy Management137
5.2.2Energy Conversion138
5.2.3Energy Storage139
5.2.4Interactions between Liquid Metal and Micro/nano
Particles140
5.2.5Fabrication of Micro/nano Liquid Metal Droplets140
5.2.6Fabrication of Micro/nano Liquid Metal Motors140
5.3Scientific and Technical Challenges141
5.4Fabrication of Magnetic Nano Liquid Metal142
5.5Nano Particles Enabled Magnetic Liquid Metal Materials142
5.6Liquid Metal Phagocytosis Effect to Make Functional Materials149
5.7Conclusion159
References160Chapter 6Liquid Metalbased Thermal Interface Material165
6.1About Thermal Interface Materials166
6.2Galliumbased Thermal Interface Materials167
6.2.1Preparation of GBTIM167
6.2.2Characterization of GBTIM167
6.3Practical Working of Galliumbased Thermal Interface Materials 169
6.4Liquid Metal Amalgams with Enhanced and Tunable Thermal
Properties175
6.5Performance Evaluation of Liquid Metal Amalgams177
6.5.1Material Preparation and Characterization177
6.5.2Chemical Composition Characterization180
6.5.3Characterization of Electrical and Thermal Conductivities183
6.5.4DSC Characterization185
6.5.5Mechanical Property Characterization186
6.5.6Adhesionguaranteed Direct Painting189
6.5.7Formabilityguaranteed Moulding190
6.6Thermally Conductive and Electrically Resistive TIM191
6.7Fabrication of Thermally Conductive and Electrically Resistive
TIM193
6.7.1Fabrication Principle193
6.7.2Characterization of LMP Grease194
6.7.3Performance of LMP Grease195
6.8Metallic Bond Enabled Wetting between Liquid Metal and Metal
Substrate203
6.8.1Metallic Bond Enabled Wetting Behavior at Liquid
Ga/CuGa2 Interfaces203
6.8.2Quantification205
6.8.3Theoretical Simulation206
6.9Bulk Expansion Effect of Galliumbased Thermal Interface
Material 215
6.9.1Experimental Phenomena215
6.9.2Influencing Factors216
6.9.3Material Characterization218
6.10Conclusion221
References222Chapter 7Low Melting Point Metal Enabled Phase Change Cooling227
7.1About Phase Change Materials228
7.2Classification of PCMs229
7.3Typical Features of Low Melting Point Metals as PCMs232
7.3.1Selection Criterion of PCMs232
7.3.2Properties of Low Melting Point Metal PCMs233
7.4Case of Using Low Melting Point Metal PCM for Smart Cooling of
USB Disk234
7.5Case of Using Low Melting Point Metal PCM for Smart Cooling
of Mobile Phone237
7.6Potential Application Areas of Low Melting Point Metal PCM246
7.6.1PCM Used in Solar Energy246
7.6.2PCM Used in Thermal Comfort Maintenance249
7.6.3PCM Used in Building Heat Storage252
7.6.4PCM Used in Thermal Management on Various
Electronic Devices 257
7.6.5PCM Used in Antilaser Heating262
7.7Theory to Quantify Phase Change Process of Low Melting Point
Metal 262
7.7.1Enthalpyporosity Method262
7.7.2Validation of Numerical Method264
7.7.3Comparison with Conventional PCM Paraffin265
7.7.4Dimensionless Correlations: Constant Wall Temperature269
7.7.5Dimensionless Correlations: Constant Heat Flux270
7.7.6Discussion on High Ra Number Condition271
7.8Phase Change of Low Melting Point Metal around Horizontal
Cylinder 272
7.8.1Theoretical Model273
7.8.2Comparison with Conventional PCM Paraffin276
7.8.3Constant Wall Temperature Case278
7.8.4Constant Wall Heat Flux Case281
7.9Low Melting Point Metal PCM Heat Sink with Internal Fins282
7.9.1Performance Enhancement of Low Melting Point Metal
PCM282
7.9.2PCM Preparation and Characterization282
7.9.3Experimental Setup284
7.9.4Transient Thermal Performance285
7.9.5Cyclic Performance287
7.9.6Numerical Modeling288
7.10Optimization of Low Melting Point Metal PCM Heat Sink290
7.10.1Optimization of PCM290
7.10.2Theoretical Evaluation291
7.10.3Problem Description293
7.10.4Numerical Method294
7.10.5Effect of Fin Number295
7.10.6Effect of Fin Width Fraction297
7.10.7Base Thickness and Structural Material298
7.10.8Heating Condition299
7.11Lattice Boltzmann Modeling of Phase Change of Low Melting
Point Metal 300
7.12Emerging Scientific Issues and Technical Challenges303
7.13Conclusion304
References305Chapter 8Fluidic Properties of Liquid Metal313
8.1Splashing Phenomena of Liquid Metal Droplet313
8.1.1About Impact of Liquid Metal Droplets314
8.1.2Experiments on Impact of Liquid Metal Droplets314
8.1.3Droplet Shapes during the Impact Dynamics316
8.1.4Quantification of the Impact Process319
8.1.5Splashing Shapes323
8.2Impact Dynamics of Water Film Coated Liquid Metal Droplet326
8.2.1Water Film Coated Liquid Metal Droplet326
8.2.2Impact Dynamics of Water Film Coated Liquid Metal
Droplet327
8.3Hybrid Fluids Made of Liquid Metal and Allied Solution334
8.4Fluidic Behaviors of Hybrid Liquid Metal and Solution335
8.4.1Electric Field Actuated Liquid Metal Flow335
8.4.2Selfdriven Motion of Liquid Metal337
8.4.3Coupled Fields on Liquid Metal Machine340
8.5Theoretical Foundation of Liquid Metal Flow341
8.5.1Physical and Chemical Properties of Gallium341
8.5.2Movement Theory342
8.5.3Deformation Theory345
8.6Theoretical Simulation Method346
8.6.1Volumeoffluid Method347
8.6.2Lattice Boltzmann Method348
8.6.3Boundary Integral Method349
8.6.4Finiteelement Method350
8.6.5Fronttracking Method350
8.7Challenges and Prospects351
8.8Conclusion352
References352Chapter 9Liquid Metal Flow Cooling and Its Applications in Diverse
Areas357
9.1Comparison between Liquid Metal Cooling and Water Cooling358
9.2Electromagnetic Pump Driven Liquid Metal Cooling363
9.3Design of Practical Liquid Metal Cooling Device377
9.3.1Thermal Resistance Evaluation Theory378
9.3.2Electromagnetic Pump Design Principles380
9.3.3Radiator Design Principles381
9.3.4System Fabrication and Characterization382
9.3.5System Cooling Capability Evaluation384
9.3.6Economic Analysis and Other Practical Issues385
9.4Rotational Magnetic Field Induced Flow Cooling of Liquid Metal388
9.5Liquid Metal Cooling for Thermal Management of High Power
LEDs390
9.5.1Liquid Metal Cooling of LED390
9.5.2Experimental Setup391
9.5.3Heat Dissipation Performance Evaluation392
9.5.4Liquid Metal Cooling of Large Power Street LED Lamp397
9.6Optimization of High Performance Liquid Metal CPU Cooling399
9.6.1Optimization Criterions399
9.6.2Schematic Thermal Resistance Model400
9.6.3Parameter Optimization of Electromagnetic Pump401
9.6.4Parameter Optimization of Fin Radiator404
9.6.5Product Design and Evaluation404
9.7Liquid Metal Cooling System for More Practical Systems408
9.7.1Liquid Metal Cooling for Desktop and Notebook
Computer408
9.7.2Cooling Transformer in Electricity Delivery via Liquid
Metal409
9.8Thermal Management of Liion Battery with Liquid Metal411
9.8.1About Cooling of Electric Vehicle411
9.8.2Theoretical Analysis412
9.8.3Cooling Capability Evaluation414
9.8.4Pump Power Consumption416
9.8.5Temperature Uniformity417
9.8.6Numerical Simulation Model418
9.8.7Computational Results420
9.9Thawing Issue of Frozen Liquid Metal Coolant424
9.10Conclusion427
References428Chapter 10Selfadaptable Liquid Metal Cooling432
10.1Electromagnetic Driving of Liquid Metal Coolant432
10.2Heat Driven Thermoelectricelectromagnetic Generator433
10.3Selfadaptive Waste Heat Driven Liquid Metal Cooling435
10.4Thermal Resistance Analysis on Heat Driven Liquid Metal
Cooling System440
10.5Thermosyphon Effect Driven Liquid Metal Cooling443
10.6Thermal Resistance Analysis on Thermosyphon Effect Driven
Liquid Metal Cooling 448
10.7Design of a Practical Selfdriven Liquid Metal Cooling Device
in a Closed Cabinet452
10.7.1Practical Application of Selfdriven Liquid Metal
Cooling452
10.7.2Cooling Capability Evaluation453
10.7.3Convective Heat Transfer Thermal Resistance of Liquid
Metal455
10.7.4System Fabrication and Test458
10.8Working of a Practical Selfdriven Liquid Metal Cooling Device
in a Closed Cabinet460
10.9Conclusion464
References465Chapter 11Liquid Metal Cooling in Small Space468
11.1Liquid Metalbased Miniaturized or Micro Chip Cooling Device469
11.1.1Miniaturized Chip Cooling Device469
11.1.2MEMSbased Chip Cooling Device470
11.1.3MEMSbased Liquid Metal Cooling Device in Harsh
Environment 472
11.2Heat Spreader Based on Room Temperature Liquid Metal472
11.2.1About Heat Spreader472
11.2.2Fundamental Equations473
11.2.3Performance Evaluation474
11.3Liquid Metal Blade Heat Dissipator478
11.4Liquid Metalbased Mini/micro Channel Cooling Device485
11.4.1About Mini/micro Channel Cooling Device485
11.4.2Pressure Difference under Different Coolant Volume
Flow487
11.4.3Convection Coefficient under Different Coolant Volume
Flow488
11.4.4Thermal Resistance under Different Pump Power489
11.4.5Flow Pattern Discrimination490
11.4.6Flow Resistance Comparison491
11.4.7Convective Heat Transfer Coefficient Comparison492
11.4.8Other Flowing Issues493
11.4.9Liquid Metal Alloybased Mini Channel Heat
Exchanger494
11.5Hybrid Mini/micro Channel Heat Sink Based on Liquid Metal and
Water494
11.5.1Hybrid Mini/micro Channel Heat Sink495
11.5.2Materials496
11.5.3Test Platform497
11.5.4Cooling Capability Comparison with Pure Water Cooling
System 498
11.6Flow and Thermal Modeling and Optimization of Micro/
mini Channel Heat Sink502
11.6.1About Micro/mini Channel Heat Sink502
11.6.2Flow and Thermal Model503
11.6.3Optimization of Micro/mini Channel Heat Sink505
11.6.4Micro Channel Water Cooling505
11.6.5Channel Aspect Ratio506
11.6.6Channel Number and Width Ratio507
11.6.7Velocity508
11.6.8Base Thickness509
11.6.9Structural Material510
11.6.10Mini Channel Liquid Metal Cooling510
11.6.11Mini Channel Water Cooling513
11.7Conclusion514
References515Chapter 12Hybrid Cooling via Liquid Metal and Aqueous Solution517
12.1Electrically Driven Hybrid Cooling via Liquid Metal and
Aqueous Solution518
12.1.1Coolants and Driving Strategy518
12.1.2System Designing519
12.1.3Continuous Actuation of Liquid Metal Spheres Circular
Motion 519
12.1.4Heat Transfer Performance520
12.1.5Thermal Resistance Components521
12.1.6Heat Transfer Capacity under Different Driving Voltages522
12.1.7Electrical Driving of Liquid Metal Droplet523
12.1.8Liquid Metal Droplets Periodic Circular Motion in
Different Conditions 524
12.1.9More Potential Coolants with Improved Performances525
12.2Alternating Electric Field Actuated Liquid Metal Cooling526
12.2.1Liquid Metal as Water Driving Pump526
12.2.2Performance of the Liquid Metal Droplet Driven Flow527
12.3Selfdriving Thermopneumatic Liquid Metal Cooling or
Energy Harvesting535
12.3.1Hybrid Coolants towards Automatic Heating Driving535
12.3.2Running of Thermopneumatic Liquid Metal Energy
Harvester536
12.4Hybrid Liquid Metalwater Cooling System for Heat Dissipation541
12.4.1Combined Liquid Metal Heat Transport and Water
Cooling541
12.4.2Working Performances of Combined Liquid Metal and
Water Cooling542
12.4.3Theoretical Analysis on Combined Liquid Metal and
Water Cooling547
12.5Electromagnetic Driving Rotation of Hybrid Liquid Metal and
Solution Pool551
12.5.1Electromagnetic Driving Rotation of Hybrid Fluids551
12.5.2Rotational Motion of Liquid Metal in Electromagnetic
Field552
12.5.3Controlling the Rotating Motion of Liquid Metal Pool555
12.5.4Liquid Metal Patterns Induced by Electric Capillary
Force559
12.6Dynamic Interactions of Leidenfrost Droplets on Liquid Metal
Surface566
12.7Conclusion574
References575Chapter 13Liquid Metal for the Harvesting of Heat and Energy577
13.1Direct Harvesting of Solar Thermal Power or Lowgrade Heat580
13.2Liquid Metalbased Thermoelectric Generation581
13.3Thermionic Technology587
13.4Liquid Metalbased MHD Power Generation589
13.5Alkali Metalbased Thermoelectric Conversion Technology590
13.6Direct Solar Thermoelectric Power Generation591
13.7Liquid Metal Cooled Photovoltaic Cell596
13.7.1Thermal Management for Optical Concentration Solar
Cells596
13.7.2Experimental System597
13.7.3Performance Evaluation598
13.7.4Theoretical Evaluation on Thermal Resistance601
13.8Solar Thermionic Power Generation605
13.9MHD and AMTEC Technology609
13.10Cascade System612
13.11Remarks and Future Developments614
13.12Harvesting Heat to Generate Electricity via Liquid Metal
Thermosyphon Effect616
13.13Liquid Metal Thermal Joint619
13.14Conclusion626
References626Chapter 14Combinatorial Liquid Metal Heat Transfer towards Extreme
Cooling630
14.1Proposition of Combinatorial Liquid Metal Heat Transfer630
14.2Basic Cooling System633
14.2.1Abstract Division of A Cooling System633
14.2.2Heat Acquisition Segment635
14.2.3Heat Rejection Segment637
14.2.4Heat Transport Segment637
14.3LMPM PCM Combined Cooling System639
14.3.1LMPM PCM Cooling639
14.3.2LMPM PCM Against Thermal Shock642
14.4Liquid Metal Convectionbased Cooling Systems642
14.5All Liquid Metal Combined Cooling System645
14.6Other Alternative Combinations645
14.7Conclusion646
References647Appendix653 Index656
展开全部

Advanced liquid metal cooling for chip, device and system 作者简介

清华大学医学院生物医学工程系教授,中国科学院理化技术研究所研究员。先后入选中国科学院及清华大学百人计划,国家杰出青年科学基金获得者。长期从事液态金属、生物医学工程与工程热物理等领域交叉科学问题研究并作出系列开创性贡献。发现液态金属诸多全新科学现象、基础效应和变革性应用途径,开辟了液态金属在生物医疗、柔性机器人、印刷电子、3D打印、先进能源以及芯片冷却等领域突破性应用,成果在世界范围产生广泛影响出版14部跨学科前沿著作及20篇应邀著作章节;发表期刊论文480余篇(20余篇英文封面或封底故事);申报发明专利200余项,已获授权130余项。曾获国际传热界最高奖之一“The William Begell Medal”、全国首届创新争先奖、中国制冷学会技术发明一等奖、ASME会刊Journal of Electronic Packaging年度唯一最佳论文奖、入围及入选“两院院士评选中国十大科技进展新闻”各1次,入选CCTV 2015年度十大科技创新人物等。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服