书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >
Python无监督学习实战(影印版)

Python无监督学习实战(影印版)

出版社:东南大学出版社出版时间:2020-04-01
开本: 其他 页数: 337
中 图 价:¥84.0(7.5折) 定价  ¥112.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>
买过本商品的人还买了

Python无监督学习实战(影印版) 版权信息

  • ISBN:9787564188283
  • 条形码:9787564188283 ; 978-7-5641-8828-3
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

Python无监督学习实战(影印版) 本书特色

  许多行业专家都认为无监督学习是人工智能的下一个前沿领域,可能是通用人工智能的关键。一方面,由于世界上大多数数据是无标签的,无法应用传统的有监督学习;另一方面,无监督学习可以应用于未标签的数据集,以发现数据中深藏的有意义模式,这些模式对于人类来说几乎不可能被发现。
  作者Ankur A.Patel为你展示了如何使用两个简单且可用于生产的Python框架实践无监督学习:Scikit-Learn和使用Keras的TensorFlow。通过代码和实践示例,数据科学家可以识别数据中难以找到的模式并获得更深入的业务洞察,发现数据异常,执行自动特征工程和模型选择,以及生成合成数据集。你只需要一些Python编程和机器学习经验就可以开始阅读《Python无监督学习实战(影印版 英文版)》了。
  ·比较不同机器学习方法的优缺点:监督学习、无监督学习和强化学习
  ·建立和管理端到端的机器学习项目
  ·建立一个异常检测系统以查出信用卡欺诈行为
  ·将用户分组为不同的同质组  许多行业专家都认为无监督学习是人工智能的下一个前沿领域,可能是通用人工智能的关键。一方面,由于世界上大多数数据是无标签的,无法应用传统的有监督学习;另一方面,无监督学习可以应用于未标签的数据集,以发现数据中深藏的有意义模式,这些模式对于人类来说几乎不可能被发现。
  作者Ankur A.Patel为你展示了如何使用两个简单且可用于生产的Python框架实践无监督学习:Scikit-Learn和使用Keras的TensorFlow。通过代码和实践示例,数据科学家可以识别数据中难以找到的模式并获得更深入的业务洞察,发现数据异常,执行自动特征工程和模型选择,以及生成合成数据集。你只需要一些Python编程和机器学习经验就可以开始阅读《Python无监督学习实战(影印版 英文版)》了。
  ·比较不同机器学习方法的优缺点:监督学习、无监督学习和强化学习
  ·建立和管理端到端的机器学习项目
  ·建立一个异常检测系统以查出信用卡欺诈行为
  ·将用户分组为不同的同质组
  ·执行半监督学习
  ·使用受限玻尔兹曼机开发电影推荐系统
  ·使用生成对抗网络来生成合成图像

Python无监督学习实战(影印版) 内容简介

本书为你展示了如何使用两个简单且可用于生产的Python框架实践无监督学习:Scikit—Learn和使用Keras的TensorFlow.通过代码和实践示例,数据科学家可以识别数据中难以找到的模式并获得更深入的业务洞察,发现数据异常,执行自动特征工程和模型选择,以及生成合成数据集。

Python无监督学习实战(影印版) 目录

reface
Part Ⅰ Fundamentals of Unsupervised Learning
1. Unsupervised Learning in the Machine Learning Ecosystem
Basic Machine Learning Terminology
Rules-Based vs. Machine Learning
Supervised vs. Unsupervised
The Strengths and Weaknesses of Supervised Learning
The Strengths and Weaknesses of Unsupervised Learning
Using Unsupervised Learning to Improve Machine Learning Solutions
A Closer Look at Supervised Algorithms
Linear Methods
……
展开全部

Python无监督学习实战(影印版) 作者简介

安科尔·A.帕特尔,是7Park Data公司的数据科学副总裁,这是一家由美国私募股权基金(Vista Equity Partners)投资的公司。Ankur和他的数据科学团队在7Park Data公司使用替代数据为对冲基金和公司构建数据产品,并为企业客户开发机器学习服务(MLaaS)。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服