书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
Theory of relativity(泡利物理学讲义:相对论)

Theory of relativity(泡利物理学讲义:相对论)

出版社:世界图书出版公司出版时间:2020-01-01
开本: 23cm 页数: 14,241页
本类榜单:自然科学销量榜
中 图 价:¥47.3(8.6折) 定价  ¥55.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>
买过本商品的人还买了

Theory of relativity(泡利物理学讲义:相对论) 版权信息

Theory of relativity(泡利物理学讲义:相对论) 本书特色

此书是世界图书出版公司出版的9卷本“泡利物理学讲义”中的第7卷,主题为相对论。沃尔夫冈·泡利是20世纪卓越的理论物理学家,1945年诺贝尔物理学奖得主,他在原子物理学和量子力学领域做出了重要贡献,发现了“泡利不相容原理”,建立了“中微子”假说,提出了二分量波函数的概念和著名的泡利自旋矩阵,并在量子场论、固体物理等领域都做了很多杰出的工作。泡利去世后,他晚年的助手查尔斯·恩斯教授编辑修订了他生前在苏黎世联邦理工学院的授课讲义的英文版,分6卷,分别为《电动力学》《光学和电子论》《热力学和气体分子运动论》《统计力学》《波动力学》和《场量子化选讲》,英文版由The MIT Press出版。泡利年轻的时候还写过两篇重要的长达数百页的综述长文《相对论》和《量子力学的普遍原理》,直至今日仍是相对论与量子力学领域重要的经典文献。1921年,泡利为德国的《数学科学百科全书》撰写了关于相对论的长篇综述文章,爱因斯坦阅读后评价道:“任何该领域的专家都不会相信,该文出自一个年仅21岁的青年人之手,作者在文中显示出来的对这个领域的理解力、熟练的数学推导能力、对物理深刻的洞察力、使问题明晰的能力、系统的表述、对语言的把握、对该问题的完整处理及对其评价,使任何一个人都会感到羡慕。”1933年,泡利又为德国的《物理百科全书》撰写了关于量子力学的长篇综述文章,很快也成为经典。这两篇综述长文后来都以单行本的方式独立出版。在泡利生命的*后一年,他又对两书进行了全面修订,英文版分别由Pergamon Press和Springer-Verlag再次出版。我们将这两本书作为“泡利物理学讲义”的第7卷和第8卷一起出版。1994年,Springer-Verlag又出版了同样由泡利晚年助手查尔斯·恩斯教授编辑的《泡利物理哲学文集》,此书包含了泡利撰写的关于空间、时间与因果性、对称、泡利不相容原理和中微子等的21篇重在阐述科学思想与哲学的文章和演讲稿。我们将此书作为“泡利物理学讲义”的第9卷。这套“泡利物理学讲义”对高等院校的学生与研究人员深刻理解物理原理会有极大的帮助。此书是世界图书出版公司出版的9卷本“泡利物理学讲义”中的第7卷,主题为相对论。沃尔夫冈·泡利是20世纪卓越的理论物理学家,1945年诺贝尔物理学奖得主,他在原子物理学和量子力学领域做出了重要贡献,发现了“泡利不相容原理”,建立了“中微子”假说,提出了二分量波函数的概念和著名的泡利自旋矩阵,并在量子场论、固体物理等领域都做了很多杰出的工作。泡利去世后,他晚年的助手查尔斯·恩斯教授编辑修订了他生前在苏黎世联邦理工学院的授课讲义的英文版,分6卷,分别为《电动力学》《光学和电子论》《热力学和气体分子运动论》《统计力学》《波动力学》和《场量子化选讲》,英文版由The MIT Press出版。泡利年轻的时候还写过两篇重要的长达数百页的综述长文《相对论》和《量子力学的普遍原理》,直至今日仍是相对论与量子力学领域重要的经典文献。1921年,泡利为德国的《数学科学百科全书》撰写了关于相对论的长篇综述文章,爱因斯坦阅读后评价道:“任何该领域的专家都不会相信,该文出自一个年仅21岁的青年人之手,作者在文中显示出来的对这个领域的理解力、熟练的数学推导能力、对物理深刻的洞察力、使问题明晰的能力、系统的表述、对语言的把握、对该问题的完整处理及对其评价,使任何一个人都会感到羡慕。”1933年,泡利又为德国的《物理百科全书》撰写了关于量子力学的长篇综述文章,很快也成为经典。这两篇综述长文后来都以单行本的方式独立出版。在泡利生命的*后一年,他又对两书进行了全面修订,英文版分别由Pergamon Press和Springer-Verlag再次出版。我们将这两本书作为“泡利物理学讲义”的第7卷和第8卷一起出版。1994年,Springer-Verlag又出版了同样由泡利晚年助手查尔斯·恩斯教授编辑的《泡利物理哲学文集》,此书包含了泡利撰写的关于空间、时间与因果性、对称、泡利不相容原理和中微子等的21篇重在阐述科学思想与哲学的文章和演讲稿。我们将此书作为“泡利物理学讲义”的第9卷。这套“泡利物理学讲义”对高等院校的学生与研究人员深刻理解物理原理会有极大的帮助。

Theory of relativity(泡利物理学讲义:相对论) 内容简介

沃尔夫冈·泡利(1900-1958),20世纪卓越的理论物理学家,1945年诺贝尔物理学奖得主,他在原子物理学和量子力学领域做出了重要贡献,发现了“泡利不相容原理”,建立了著名的“中微子”假说,提出了二分量波函数的概念和著名的泡利自旋矩阵,并在量子场论、固体物理等领域都做了很多杰出的工作。泡利去世后,他晚年的助手查尔斯·恩斯教授编辑修订了他生前在苏黎世联邦理工学院的授课讲义的英文版,分6卷(《电动力学》《光学和电子论》《热力学和气体分子运动论》《统计力学》《波动力学》《场量子化选讲》),由The MIT Press出版。泡利年轻的时候还写过两篇重要的长达数百页的综述文章《相对论》和《量子力学的普遍原理》,直至今日仍是相对论与量子力学这两个领域重要的经典文献。1921年,泡利为《数学科学百科全书》撰写了关于相对论的长篇综述文章,爱因斯坦阅读后评价道:“任何该领域的专家都不会相信,该文出自一个仅21岁的青年人之手,作者在文中显示出来的对这个领域的理解力、熟练的数学推导能力、对物理深刻的洞察力、使问题明晰的能力、系统的表述、对语言的把握、对该问题的完整处理、和对其评价,使任何一个人都会感到羡慕。”1933年,作为量子力学理论创立者之一的泡利又为《物理百科全书》撰写了关于量子力学的长篇综述文章,很快也成为经典,这两篇综述长文后来都以单行本的方式独立出版。在泡利生命的*后一年,他又对两书进行了全面修订,英文版分别由Pergamon Press和Springer出版。我们将这两本书作为“泡利物理学讲义”的第7卷和第8卷收录进来。1994年,Springer又出版了同样由泡利助手查尔斯·恩斯教授编辑的《泡利物理哲学文集》,此书包含了泡利关于空间、时间与因果性、对称、泡利不相容原理和中微子等内容的21篇重在阐述科学思想与哲学的文章和演讲稿。我们将此书作为“泡利物理学讲义”的第9卷。泡利对所有科学基本问题都具有极深刻的洞察力和准确的评判能力,这种能力对当时原子物理学和量子力学的发展产生了积极的影响,这种能力也体现在他的每一本著作中,内容简洁,直击物理的核心,而非迷失在繁琐的数学推导中。美国麻省理工学院的维克托·韦斯科夫院士在The MIT Press出版的6卷本“泡利物理学讲义”的序言中写道:“泡利对物理的阐释方式永远不会过时”。

Theory of relativity(泡利物理学讲义:相对论) 目录

Preface by W. Pauli Preface by A. Sommerfeld Bibliography Part 1. The Foundations of the Special Theory of RelativityHistorical Background (Lorentz, Poincaré, Einstein) The Postulate of Relativity The Postulate of the Constancy of the Velocity of Light. Ritz's and Related Theories The Relativity of Simultaneity. Derivation of the Lorentz Transformation from the Two Postulates. Axiomatic Nature of the Lorentz Transformation Lorentz Contraction and Time Dilatation Einstein's Addition Theorem for Velocities and Its Application to Aberration and the Drag Coefficient. The Doppler EffectPart 2. Mathematical ToolsThe Four-Dimensional Space-Time World (Minkowski) More General Transformation Groups Tensor Calculus for Affine Transformations Geometrical Meaning of the Contravariant and Covariant Components of a Vector "Surface" and "Volume" Tensors. Four-Dimensional Volumes Dual Tensors Transition to Riemannian Geometry Parallel Displacement of a Vector Geodesic Lines Space Curvature Riemannian Coordinates and Their Applications The Special Cases of Euclidean Geometry and of Constant Curvature The Integral Theorems of Gauss and Stokes in a Four-Dimensional Riemannian Manifold Derivation of Invariant Differential Operations, Using Geodesic Components Affine Tensors and Free Vectors Reality Relations Infinitesimal Coordinate Transformations and Variational TheoremsPart 3. Special Theory of Relativity. Further ElaborationsKinematics Four-Dimensional Representation of the Lorentz Transformation The Addition Theorem for Velocities Transformation Law for Acceleration. Hyperbolic Motion Electrodynamics Conservation of Charge. Four-Current Density Covariance of the Basic Equations of Electron Theory Ponderomotive Forces. Dynamics of the Electron Momentum and Energy of the Electromagnetic Field. Differential and Integral Forms of the Conservation Laws The Invariant Action Principle of Electrodynamics Applications to Special Cases Minkowski's Phenomenological Electrodynamics of Moving Bodies Electron-Theoretical Derivations Energy-Momentum Tensor and Ponderomotive Force in Phenomenological Electrodynamics. Joule Heat Applications of the Theory Mechanics and General Dynamics Equation of Motion. Momentum and Kinetic Energy Relativistic Mechanics on a Basis Independent of Electrodynamics Hamilton's Principle in Relativistic Mechanics Generalized Coordinates. Canonical Form of the Equations of Motion The Inertia of Energy General Dynamics Transformation of Energy and Momentum of a System in the Presence of External Forces Applications to Special Cases. Trouton and Noble's Experiments Hydrodynamics and Theory of Elasticity Thermodynamics and Statistical Mechanics Behaviour of the Thermodynamical Quantities Under a Lorentz Transformation The Principle of Least Action The Application of Relativity to Statistical Mechanics Special CasesPart 4. General Theory of RelativityHistorical Review, Up to Einstein's Paper of 1916 General Formulation of the Principle of Equivalence. Connection Between Gravitation and Metric The Postulate of the General Covariance of the Physical Laws Simple Deductions from the Principle of Equivalence Influence of the Gravitational Field on Material Phenomena The Action Principles for Material Processes in the Presence of Gravitational Fields The Field Equations of Gravitation Derivation of the Gravitational Equations from a Variational Principle Comparison with Experiment Other Special, Rigorous, Solutions for the Statical Case Einstein's General Approximative Solution and Its Applications The Energy of the Gravitational Field Modifications of the Field Equations. Relativity of Inertia and the Space-Bounded UniversePart 5. Theories on the Nature of Charged Elementary ParticlesThe Electron and the Special Theory of Relativity Mie's Theory Weyl's Theory Einstein's Theory General Remarks on the Present State of the Problem of MatterSupplementary Notes Author Index Subject Index
展开全部

Theory of relativity(泡利物理学讲义:相对论) 作者简介

沃尔夫冈·泡利(Wolfgang E. Pauli),美籍奥地利科学家、物理学家,1945年诺贝尔物理学奖得主。1900年4月25日生于奥地利维也纳,毕业于慕尼黑大学,1958年12月15日,在瑞士苏黎世逝世,享年58岁。泡利在原子物理学和量子力学领域做出了重要贡献,发现了“泡利不相容原理”,建立了“中微子”假说,提出了二分量波函数的概念和著名的泡利自旋矩阵,并在量子场论、固体物理等领域都做了很多杰出的工作。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服