扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
营销管理
-
>
茶叶里的全球贸易史(精装)
-
>
近代华商股票市场制度与实践(1872—1937)
-
>
麦肯锡图表工作法
-
>
底层逻辑:看清这个世界的底牌
-
>
李诞脱口秀工作手册
-
>
成事:冯唐品读曾国藩嘉言钞
商业智能原理与应用 版权信息
- ISBN:9787308188241
- 条形码:9787308188241 ; 978-7-308-18824-1
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
商业智能原理与应用 内容简介
本书紧密结合经管类学生的知识结构和学习特点, 以“商业智能”应用为主线, 系统介绍了商业智能的概念、方法、技术及应用, 克服了以“数据挖掘”技术为主线的局限性。以MS SQL Server为数据仓库管理平台, 以SQL Server Business Intelligence Development Visual Studio作为商业智能开发平台, 采用导航式教学方式, 进行丰富的案例演示, 采用二维码引导的操作过程视频, 学生易于学习和掌握。并探索建立人机在线互动的操作指导实验教学模式。
商业智能原理与应用 目录
**章 数据挖掘和商业智能
**节 数据挖掘的兴起
第二节 什么是商业智能
第三节 数据挖掘和商业智能工具
第四节 数据挖掘应用案例
小结
思考与练习
第二章 数据仓库
**节 数据仓库的概念
第二节 数据仓库的体系结构
第三节 元数据
第四节 数据集市
第五节 数据仓库设计与实施
第六节 Microsoft数据仓库和商业智能工具
第七节 数据仓库设计案例
小结
思考与练习
实验
第三章 数据预处理
**节 数据预处理的重要性
第二节 数据清洗
第三节 数据集成与转换
第四节 数据消减
第五节 离散化和概念层次树生成
第六节 使用SSIS对数据进行ETL操作
小结
思考与练习
实验
第四章 多维数据分析
**节 多维数据分析基础
第二节 多维数据分析方法
第三节 多维数据的存储方式
第四节 多维表达式
第五节 使用SQL Server Analysis Server构建维度和多维数据集
第六节 使用Excel数据透视图浏览多维数据集
小结
思考与练习
实验
第五章 用Microsoft SSRS处理智能报表
**节 SSRS商业智能报表
第二节 使用SSRS创建报表
小结
实验
第六章 数据挖掘技术
**节 数据挖掘的任务
第二节 数据挖掘的对象
第三节 数据挖掘系统的分类
第四节 数据挖掘项目的生命周期
第五节 数据挖掘面临的挑战及发展
小结
思考与练习
第七章 关联挖掘
**节 关联规则挖掘
第二节 单维布尔关联规则挖掘
第三节 挖掘多层次关联规则
第四节 多维关联规则的挖掘
第五节 关联挖掘中的相关分析
第六节 利用Microsoft SSAS进行关联挖掘
小结
思考与练习
实验
第八章 分类与预测
**节 分类与预测基本知识
第二节 有关分类和预测的几个问题
第三节 基于决策树的分类
第四节 贝叶斯分类方法
第五节 神经网络分类方法
第六节 分类器准确性
第七节 预测方法
第八节 Microsoft贝叶斯算法
第九节 Microsoft决策树算法
第十节 Microsoft神经网络算法
小结
思考与练习
实验
第九章 聚类分析
**节 聚类分析概念
第二节 聚类分析中的数据类型
第三节 主要聚类方法
第四节 划分方法
第五节 层次方法
第六节 基于密度方法
第七节 异常数据分析
第八节 Microsoft聚类算法
小结
思考与练习
实验
第十章 时序数据和序列数据挖掘
**节 时间序列模型
第二节 Microsoft的时序算法
第三节 Microsoft时序算法示例
第四节 Microsoft的序列模式挖掘
小结
思考与练习
实验
第十一章 基于多维数据集的数据挖掘
**节 OLAP和数据挖掘之间的关系
第二节 构建OLAP挖掘模型
小结
参考文献
**节 数据挖掘的兴起
第二节 什么是商业智能
第三节 数据挖掘和商业智能工具
第四节 数据挖掘应用案例
小结
思考与练习
第二章 数据仓库
**节 数据仓库的概念
第二节 数据仓库的体系结构
第三节 元数据
第四节 数据集市
第五节 数据仓库设计与实施
第六节 Microsoft数据仓库和商业智能工具
第七节 数据仓库设计案例
小结
思考与练习
实验
第三章 数据预处理
**节 数据预处理的重要性
第二节 数据清洗
第三节 数据集成与转换
第四节 数据消减
第五节 离散化和概念层次树生成
第六节 使用SSIS对数据进行ETL操作
小结
思考与练习
实验
第四章 多维数据分析
**节 多维数据分析基础
第二节 多维数据分析方法
第三节 多维数据的存储方式
第四节 多维表达式
第五节 使用SQL Server Analysis Server构建维度和多维数据集
第六节 使用Excel数据透视图浏览多维数据集
小结
思考与练习
实验
第五章 用Microsoft SSRS处理智能报表
**节 SSRS商业智能报表
第二节 使用SSRS创建报表
小结
实验
第六章 数据挖掘技术
**节 数据挖掘的任务
第二节 数据挖掘的对象
第三节 数据挖掘系统的分类
第四节 数据挖掘项目的生命周期
第五节 数据挖掘面临的挑战及发展
小结
思考与练习
第七章 关联挖掘
**节 关联规则挖掘
第二节 单维布尔关联规则挖掘
第三节 挖掘多层次关联规则
第四节 多维关联规则的挖掘
第五节 关联挖掘中的相关分析
第六节 利用Microsoft SSAS进行关联挖掘
小结
思考与练习
实验
第八章 分类与预测
**节 分类与预测基本知识
第二节 有关分类和预测的几个问题
第三节 基于决策树的分类
第四节 贝叶斯分类方法
第五节 神经网络分类方法
第六节 分类器准确性
第七节 预测方法
第八节 Microsoft贝叶斯算法
第九节 Microsoft决策树算法
第十节 Microsoft神经网络算法
小结
思考与练习
实验
第九章 聚类分析
**节 聚类分析概念
第二节 聚类分析中的数据类型
第三节 主要聚类方法
第四节 划分方法
第五节 层次方法
第六节 基于密度方法
第七节 异常数据分析
第八节 Microsoft聚类算法
小结
思考与练习
实验
第十章 时序数据和序列数据挖掘
**节 时间序列模型
第二节 Microsoft的时序算法
第三节 Microsoft时序算法示例
第四节 Microsoft的序列模式挖掘
小结
思考与练习
实验
第十一章 基于多维数据集的数据挖掘
**节 OLAP和数据挖掘之间的关系
第二节 构建OLAP挖掘模型
小结
参考文献
展开全部
书友推荐
- >
【精装绘本】画给孩子的中国神话
【精装绘本】画给孩子的中国神话
¥17.6¥55.0 - >
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
企鹅口袋书系列·伟大的思想20:论自然选择(英汉双语)
¥9.7¥14.0 - >
推拿
推拿
¥12.2¥32.0 - >
小考拉的故事-套装共3册
小考拉的故事-套装共3册
¥36.7¥68.0 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥20.6¥48.0 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
月亮与六便士
月亮与六便士
¥18.1¥42.0 - >
我与地坛
我与地坛
¥15.4¥28.0
本类畅销
-
中国近代海关史
¥84¥200 -
开店做生意
¥19.2¥35 -
中国海关报关专业教材
¥26.6¥80 -
跨界战争:商业重组与社会巨变
¥42.3¥59 -
创业维艰 如何完成比难更难的事
¥49.3¥69 -
运营之路:数据分析+数据运营+用户增长
¥74.3¥99