书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
非侵入式负荷识别:理论、技术与应用:theory, technologies and applications

非侵入式负荷识别:理论、技术与应用:theory, technologies and applications

作者:刘辉
出版社:科学出版社出版时间:2020-01-01
开本: 24cm 页数: 10,277页
本类榜单:自然科学销量榜
中 图 价:¥132.7(7.9折) 定价  ¥168.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

非侵入式负荷识别:理论、技术与应用:theory, technologies and applications 版权信息

非侵入式负荷识别:理论、技术与应用:theory, technologies and applications 本书特色

非侵入式负荷识别技术作为智能电网需求侧能源管理的基础,在优化电网供求关系、促进节能减排等方面具有广阔的应用前景。本书全面介绍了非侵入式负荷识别的相关的基本理论、关键技术和应用实例。全书分为10章,第1章介绍非侵入式负荷识别的技术背景、相关定义和涉及的关键基础问题;接着分4大部分展开,*篇介绍非侵入式负荷分解的前处理过程,包括第2章介绍的负荷时序状态变动检测和第3章介绍的用电负荷差异化特征提取;第二篇介绍非侵入式负荷统计识别方法,重点讨论基于模板匹配的负荷识别模型和基于稳态电流分解的负荷识别模型;第三篇介绍用电负荷智能识别方法,包括基于机器学习的负荷识别模型,基于隐含马尔可夫的负荷识别模型和基于深度学习的负荷识别模型;第四篇介绍非侵入式负荷识别在智能用电负荷预测方法中的应用,包括用电负荷时序确定性预测和用电负荷时序区间预测。各部分内容都附有实例分析,帮助读者深入理解相关内容、激发创新灵感。

非侵入式负荷识别:理论、技术与应用:theory, technologies and applications 内容简介

非侵入式负荷识别技术作为智能电网需求侧能源管理的基础,在优化电网供求关系、促进节能减排等方面具有广阔的应用前景。本书全面介绍了非侵入式负荷识别的相关的基本理论、关键技术和应用实例。全书分为10章,第1章介绍非侵入式负荷识别的技术背景、相关定义和涉及的关键基础问题;接着分4大部分展开,**篇介绍非侵入式负荷分解的前处理过程,包括第2章介绍的负荷时序状态变动检测和第3章介绍的用电负荷差异化特征提取;第二篇介绍非侵入式负荷统计识别方法,重点讨论基于模板匹配的负荷识别模型和基于稳态电流分解的负荷识别模型;第三篇介绍用电负荷智能识别方法,包括基于机器学习的负荷识别模型,基于隐含马尔可夫的负荷识别模型和基于深度学习的负荷识别模型;第四篇介绍非侵入式负荷识别在智能用电负荷预测方法中的应用,包括用电负荷时序确定性预测和用电负荷时序区间预测。各部分内容都附有实例分析,帮助读者深入理解相关内容、激发创新灵感。

非侵入式负荷识别:理论、技术与应用:theory, technologies and applications 目录

1 Introduction 1.1 Overview of the Non-intrusive Load Monitoring 1.1.1 The Non-intrusive Load Monitoring 1.1.2 Overview of Recent Research in Non-intrusive Load Monitoring 1.2 Fundamental Key Problems of Non-intrusive Load Monitoring 1.2.1 Event Detection in Non-intrusive Load Monitoring 1.2.2 Feature Extraction in Non-intrusive Load Monitoring 1.2.3 Load Identification in Non-intrusive Load Monitoring 1.2.4 Energy Forecasting in Smart Buildings 1.3 Scope of This Book References 2 Detection of Transient Events in Time Series 2.1 Introduction 2.2 Cumulative Sum Based Transient Event Detection Algorithm 2.2.1 Mathematical Description of Change Point Detection 2.2.2 Parametric CUSUM Algorithm 2.2.3 Non-parametric CUSUM Algorithm 2.2.4 Sliding Windows Based on Two-Sided CUSUM Algorithm 2.2.5 Original Dataset 2.2.6 Evaluation Criteria and Results Analysis 2.3 Generalized Likelihood Ratio 2.3.1 The Theoretical Basis of GLR 2.3.2 Comparison of Event Detection Results 2.4 Sequential Probability Ratio Test 2.4.1 The Theoretical Basis of SPRT 2.4.2 Comparison of Event Detection Results 2.5 Experiment Analysis 2.5.1 The Results of Three Kinds of Algorithms. 2.5.2 Conclusion References 3 Appliance Signature Extraction 3.1 Introduction 3.1.1 Background 3.1.2 Feature Evaluation Indices 3.1.3 Classification Evaluation Indices 3.1.4 Data Selection 3.2 Features Based on Conventional Physical Definition 3.2.1 The Theoretical Basis of Physical Definition Features 3.2.2 Feature Extraction 3.2.3 Feature Evaluation 3.2.4 Classification Results 3.3 Features Based on Time-Frequency Analysis 3.3.1 The Theoretical Basis of Harmonic Features 3.3.2 Feature Extraction 3.3.3 Feature Evaluation 3.3.4 Classification Results 3.4 Features Based on VI Image 3.4.1 The Theoretical Basis of VI Image Features 3.4.2 Feature Extraction 3.4.3 Feature Evaluation 3.4.4 Classification Results 3.5 Features Based on Adaptive Methods 3.5.1 The Theoretical Basis of Adaptive Features 3.5.2 Feature Extraction 3.5.3 Classification Results 3.6 Experimental Analysis 3.6.1 Comparative Analysis of Classification Performance 3.6.2 Conclusion References 4 Appliance Identification Based on Template Matching 4.1 Introduction 4.1.1 Background 4.1.2 Data Preprocessing of the PLAID Dataset 4.2 Appliance Identification Based on Decision Tree 4.2.1 The Theoretical Basis of Decision Tree 4.2.2 Steps of Modeling 4.2.3 Classification Results 4.3 Appliance Identification Based on KNN Algorithm 4.3.1 The Theoretical Basis of KNN 4.3.2 Steps of Modeling 4.3.3 Classification Results 4.4 Appliance Identification Based on DTW Algorithm 4.4.1 The Theoretical Basis of DTW 4.4.2 Steps of Modeling 4.4.3 Classification Results 4.5 Experiment Analysis 4.5.1 Model Framework 4.5.2 Comparative Analysis of Classification Performance 4.5.3 Conclusion References 5 Steady-State Current Decomposition Based Appliance Identification 5.1 Introduction 5.2 Classical Steady-State Current Decomposition Models 5.2.1 Model Framework 5.2.2 Classical Features of Steady-State Decomposition and the Feature Extraction Method 5.2.3 Classical Methods in Steady-State Current Decomposition 5.2.4 Performance of the Various Features and Models 5.3 Current Decomposition Models Based on Harmonic Phasor 5.3.1 Model Framework 5.3.2 Novel Features of Steady-State Current Decomposition 5.3.3 Multi-objective Optimization Methods in Steady-State Current Decomposition 5.3.4 Performance of the Novel Features and Multi-objective Optimization Models 5.4 Current Decomposition Models Based on Non-negative Matrix Factor 5.4.1 Model Framework 5.4.2 Reconstruction of the Data 5.4.3 Non-negative Matrix Factorization Method of the Current Decomposition 5.4.4 Evaluation of the NMF Method in Current Decomposition 5.5 Experiment Analysis 5.5.1 Data Generation 5.5.2 Comparison Analysis of the Features Used in the Steady-State Decomposition 5.5.3 Comparison Analysis of the Models Used in the Steady-State Decomposition 5.5.4 Conclusion References 6 Machine Learning Based Appliance Identification 6.1 Introduction 6.2 Appliance Identification Based on Extreme Learning Machine 6.2.1 The Theoretical Basis of ELM 6.2.2 Steps of Modeling 6.2.3 Classification Results 6.3 Appliance Identification Based on Support Vector Machine 6.3.1 The Theoretical Basis of SVM 6.3.2 Steps of Modeling 6.3.3 Classification Results 6.4 Appliance Identification Based on Random Forest 6.4.1 The Theoretical Basis of Random Forest 6.4.2 Steps of Modeling 6.4.3 Classification Results 6.5 Experiment Analysis 6.5.1 Model Framework 6.5.2 Feature Preprocessing for Non-intrusive Load Monitoring 6.5.3 Classifier Model Optimization Algorithm for Non-intrusive Load Monitoring 6.6 Conclusion References 7 Hidden Markov Models Based Appliance 7.1 Introduction 7.2 Appliance Identification Based on Hidden Markov Models 7.2.1 Basic Problems Solved by HMM 7.2.2 Data Preprocessing 7.2.3 Determination of Load Status Information 7.3 Appliance Identification Based on Factorial Hidden Markov Models 7.3.1 The Theoretical Basis of the FHMM 7.3.2 Load Decomposition Steps Based on FHMM 7.3.3 Load Power Estimation 7.3.4 Decomposition Experiment Based on FHMM 7.3.5 Evaluation Criteria and Result Analysis 7.4 Appliance Identification Based on Hidden Semi-Markov Models 7.4.1 Hidden Semi-Markov Model 7.4.2 Improved Viterbi Algorithm 7.4.3 Evaluation Criteria and Result Analysis 7.5 Experiment Analysis References 8 Deep Learning Based Appliance Identification 8.1 Introduction 8.1.1 Deep Learning 8.1.2 NILM Based on Deep Learning 8.2 Appliance Identification Based on End-to-End Decomposition 8.2.1 Single Feature Based LSTM Network Load Decomposition 8.2.2 Multiple Features Based LSTM Network Load Decomposition 8.3 Appliance Identification Based on Appliance Classification 8.3.1 Appliance Identification Based on CNN 8.3.2 Appliance Identification Based on AlexNet 8.3.3 Appliance Identification Based on LeNet-SVM Model 8.4 Experiment Analysis 8.4.1 Experimental Analysis of End-to-End Decomposition 8.4.2 Experimental Analysis of Appliance Classification References 9 Deterministic Prediction of Electric Load Time Series 9.1 Introduction 9.1.1 Background 9.1.2 Advance Prediction Strategies 9.1.3 Original Electric Load Time Series 9.2 Load Forecasting Based on ARIMA Model 9.2.1 Model Framework 9.2.2 Theoretical Basis of ARIMA 9.2.3 Modeling Steps of ARIMA Predictive Model 9.2.4 Predictive Results 9.2.5 The Theoretical Basis of EMD 9.2.6 Optimization of EMD Decomposition Layers 9.2.7 Predictive Results 9.3 Load Forecasting Based on Elman Neural Network 9.3.1 Model Framework 9.3.2 Steps of Modeling 9.3.3 Predictive Results 9.3.4 Optimization of EMD Decomposition Layers 9.3.5 Predictive Results 9.4 Experiment Analysis 9.4.1 Comparative Analysis of Predictive Performance 9.5 Conclusion References 10 Interval Prediction of Electric Load Time Series 10.1 Introduction 10.2 Interval Prediction Based on Quantile Regression 10.2.1 The Performance Evaluation Metrics 10.2.2 Original Sequence for Modeling 10.2.3 The Theoretical Basis of Quantile Regression 10.2.4 Quantile Regression Based on the Total Electric Load Time Series 10.2.5 Quantile Regression Based on Additional Time and Date Information 10.2.6 Quantile Regression Based on Information from Sub-meters 10.3 Interval Prediction Based on Gaussian Process Filtering 10.3.1 The Theoretical Basis of Gaussian Process Regression 10.3.2 Gaussian Process Regression Based on the Total Electric Load Time Series 10.3.3 Gaussian Process Regression Based on Different Input Features 10.3.4 Gaussian Process Regression Based on Feature Selection 10.4 Experiment Analysis References
展开全部
商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服