一、铝电解惰性阳极、惰性可润湿阴极及电解新工艺[1]铝电解用SnO2基惰性阳极的研究[2]LaboratorystudyonTiB2-basedceramicforaluminumreductioncells[3]ResearchprogressinTiB2wettablecathodeforaluminumreduction[4]DevelopmentofCup-ShapedFunctionallyGradientNiFe2O4BasedCermetInertAnodeforAluminunReduction
[5]AluminaSolubilityinNa3AlF6-K3AlF6-AlF3MoltenSaltSystemProspectiveforAluminumElectrolysisatLowerTemperature[6]FurtherDevelopmentonNiFe2O4BasedCermetInertAnodesforAluminumElectrolysis二、铝电解工艺优化、自动控制与计算机仿真[7]TheEffectofanAluminaLayerattheElectrolyteAluminumInterface
-aLaboratoryStudy[J][8]Theinhibitionofanodeeffectinaluminumelectrolysis[A].LightMetals,1991[C].ProcessbyAnodeU.S.A.,1991,2.489-494[9]160kA预焙铝电解槽区域电流效率[10]点式下料铝电解槽氧化铝浓度新型估计模型[11]Basetemperaturemodelforpointfeetingaluminumreductioncells[12]Improvedfiniteelementmodelforelectro-magneticanalysisinaluminumcells
三、高温熔盐电解过程电催化[13]OxygenOvervoltageonSnO2BasedAnodesinNaF-AlF3-AL2O3Melts[A].ElectrolyticEffectsofDopingAgent,Electrochem.Acta[14]Progressinstudiesofelectrocatalysisanddopedcarbonanodeinaluminumelectrolysiscells[15]Ontheelectrocatalysisofdopedcarbonanodeinaluminumelectrolysis
[16]高温氯化物融体氯电极过程的电催化作用[17]Electrocatalysisofcarbonanodeinaluminumelectrolysis四、湿法冶金电解过程电催化[18]锌电解节能惰性阳极的研究[19]用于Ni和Zn电积的节能阳极(DSA)实验研究[20]ANovelPorousPb-AgAnodeforEnergy-savinginZincElectro-winningPartI:LaboratoryPreparationandProperties[21]ANovelPorousPb-AgAnodeforEnergy-savinginZincElectro-winningPart
Ⅱ:PreparationandPilotPlantTestofLargeSizeAnode[22]Oxygenevolutionandcorrosionbehaviorsofco-depositedPbPb-MnO2compositeanodeforelectrowinningofnonferrousmetals[23]ElectrochemicalperformanceofaPbPb-MnO2compositeanodeinsulfuricacidsolutioncontainingMn2[24]Electrochemicalbehaviorsofco-depositedPbPb-MnO2compositeanodeinsulfuricacid
solution–TafelandEISinvestigations五、电化学储能材料与器件[25]天然石墨中嵌脱锂离子过程的研究[26]EffectofcoolingmodesonmicrostructureandelectrochemicalperformanceofLiFePO4[27]CoatingofLiNi13Mn13Co13O2cathodematerialswithaluminabysolidstatereactionatroomtemperature[28]Synthesisofnitrogen-containinghollowcarbonmicrospheresbyamodifiedtemplatemethodasanodesforadvancedsodium-ionbatteries
[29]Confiningseleniuminnitrogen-containinghierarchicalporouscarbonforhigh-raterechargeablelithium-seleniumbatteries[30]AsimpleSDS-assistedself-assemblymethodforthesynthesisofhollowcarbonnanospherestoencapsulatesulfurforadvancedlithium-sulfurbatteries.[31]
Electrochemicalimpedancespectroscopystudyofalithiumsulfurbattery:Modelingandanalysisofcapacityfading.JournalofTheElectrochemicalSociety[32]Anelectrochemical–thermalmodelbasedondynamicresponsesforlithiumironphosphatebattery[33]NumericalAnalysisofDistributionandEvolutionofReactionCurrentDensityinDischargeProcessofLithium-IonPowerBattery
[34]Uniquestarchpolymerelectrolyteforhighcapacityall-solid-statelithiumsulfurbattery.GreenChem[35]Afastchargingdischargingall-solid-statelithiumionbatterybasedonPEO-MIL-53(Al)-LiTFSIthinfilmelectrolyte[36]EffectofNi-dopedonelectrochemicalcapacitanceofMnO2electrodematerial
[37]Preparationandpropertiesofpitchcarbonbasedsupercapacitor六、太阳电池与光电催化[38]CyclicvoltammetrystudyofelectrodepositionofCu(In,Ga)Se2thinfilms[39]InsitugrowthofCu2ZnSnS4thinfilmsbyreactivemagnetronco-sputtering[40]Electrodepositionofcobaltselenidethinfilms[41]FabricationofternaryCu-Sn-Ssulfidesbyamodifiedsuccessiveioniclayeradsorptionandreaction(SILAR)method[42]ColloidalsynthesisandcharacterisationofCu3SbSe3nanocrystals[43].KesteriteCu2ZnSn(S,Se)4SolarCellswithbeyond8%EfficiencybyaSol–GelandSelenizationProces
七、学术报告与科技评述[44]我国铝电解技术今后的研究与开发课题[45]论我国铝企业的产品结构调整[46]加强有色冶金基础研究的建议[47]论铝电解的节能潜力[48]电化学新材料的若干发展前沿[49]能源新材料的若干发展前沿[50]战略金属铍材料的可持续发展八、其他(氧化铝、TiAl合金、自蔓延高温合成、传感器、光催化剂、燃料电池电催化、泡沫材料、超细粉体)[51]强化烧结法生产氧化铝新工艺的研究与实践[52]氢氧化铝晶粒强度的应力状态分析[53]AnewheattreatmentprocessingforTiAlbasedalloy
[54]自蔓延高温合成中绝热温度的编程计算[55]StudyonCuO-BaTiO3semiconductorCO2sensor[56]纳米TiO2光催化剂的电化学法制备及其表征[57]Preparationofprecursorforstainlesssteelfoam[58]低温热处理以及高能球磨对制备超细氧化铝的影响