超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
生物地理学优化算法与应用

生物地理学优化算法与应用

作者:郑宇军等
出版社:科学出版社出版时间:2019-06-01
开本: 16开 页数: 228
中 图 价:¥70.4(5.5折) 定价  ¥128.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

生物地理学优化算法与应用 版权信息

  • ISBN:9787030605283
  • 条形码:9787030605283 ; 978-7-03-060528-3
  • 装帧:暂无
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

生物地理学优化算法与应用 本书特色

This book introduces readers to the background general framework, main operators, and other basic characteristics of biogeography-based optimization (BBO), which is an emerging branch of bio-inspired computation. In particular, the book presents the authors’ recent work on improved variants of BBO, hybridization of BBO with other algorthms, and the application of BBO to a variety of domains including transporta-tion, image processing, and neural network learning. The content will help to advance research and application of not only BBO but het whole field of bio-inspired compu-tation. The algorithms and applications are organized in a step-by-step manner and clearly described with the help of pscudo-codes and flowcharts. The readers will learn not only the basic concepts of BBO but also how to apply and adapt the lagorithms to the engineering optimization problems they actually encounter.

生物地理学优化算法与应用 内容简介

生物地理学优化是生物启发计算中的一种新兴算法。本书介绍了生物地理学优化的背景、基本框架、主要操作和其它基本特征。特别的,本书介绍了作者及其研究团队对生物地理学优化的两个重要改进,生物地理学优化算法与其它启发式算法的融合,以及算法在交通运输、作业调度、图像处理、神经网络训练等多个领域的应用成果。本书内容对生物地理学优化以及生物启发计算的研究和应用均有重要的促进作用。

生物地理学优化算法与应用 目录

Contents1 Optimization Problems and Algorithms 11.1 Introduction 11.2 Optimization Problems 21.2.1 Continuous Optimization Problems 21.2.2 Combinatorial Optimization Problems 51.3 Exact Optimization Algorithms 71.3.1 Gradient-Based Algorithms 71.3.2 Linear Programming Algorithm 81.3.3 Branch-and-Bound 91.3.4 Dynamic Programming 111.4 Heuristic Optimization Algorithms 121.4.1 Genetic Algorithms 121.4.2 Simulated Annealing 141.4.3 Ant Colony Optimization 161.4.4 Particle Swarm Optimization 171.4.5 Differential Evolution 181.4.6 Harmony Search 191.4.7 Fireworks Algorithm 211.4.8 Water Wave Optimization 221.5 Summary 24References 242 Biogeography-Based Optimization 272.1 Introduction 272.2 Background of Biogeography 272.3 The Basic Biogeography-Based Optimization Algorithm 322.3.1 The Migration Operator 322.3.2 The Mutation Operator 332.3.3 The Algorithmic Framework 342.3.4 Comparison with Some Classical Heuristics 352.4 Recent Advances of Biogeography-Based Optimization 362.4.1 Improved Biogeography-Based Optimization Algorithms 362.4.2 Adaption of BBO for Constrained Optimization 402.4.3 Adaption of BBO for Multi-objective Optimization 432.4.4 Adaption of BBO for Combinatorial Optimization 452.5 Summary 47References 473 Localized Biogeography-Based Optimization: Enhanced by Local Topologies 513.1 Introduction 513.2 Population Topology 513.2.1 Global Topology 513.2.2 Local Topologies 533.2.3 Research of Heuristic Algorithms with Local Topologies 563.3 Localized Biogeography-Based Optimization Algorithms 573.3.1 Local-BBO with the Ring Topology 573.3.2 Local-BBO with the Square Topology 583.3.3 Local-BBO with the Random Topology 583.4 Computational Experiments 613.5 Summary 66References 664 Ecogeography-Based Optimization: Enhanced by Ecogeographic Barriers and Differentiations 694.1 Introduction 694.2 Background of Ecogeography 694.3 The Ecogeography-Based Optimization Algorithm 714.3.1 Local Migration and Global Migration 714.3.2 Migration Based on Maturity 724.3.3 The Algorithmic Framework of EBO 724.4 Computational Experiments 734.4.1 Experimental Settings 734.4.2 Impact of the Immaturity Index η 744.4.3 Comparison of the 10-D Functions 744.4.4 Comparison of the 30-D Functions 784.4.5 Comparison of the 50-D Functions 834.4.6 Discussion 834.5 Summary 86References .875 Hybrid Biogeography-Based Optimization Algorithms 895.1 Introduction 895.2 Hybridization with Differential Evolution 895.2.1 The DE/BBO Algorithm 895.2.2 Local-DE/BBO 915.2.3 Self-adaptive DE/BBO 975.3 Hybridization with Harmony Search 1045.3.1 Biogeographic Harmony Search 1045.3.2 Computational Experiments 1055.4 Hybridization with Fireworks Algorithm 1095.4.1 A Hybrid BBO and FWA Algorithm 1095.4.2 Computational Experiments 1105.5 Summary 114References 1146 Application of Biogeography-Based Optimization in Transportation 1176.1 Introduction 1176.2 BBO for General Transportation Planning 1176.2.1 A General Transportation Planning Problem 1176.2.2 BBO Algorithms for the Problem 1196.2.3 Computational Experiments 1196.3 BBO for Emergency Transportation Planning 1236.3.1 An Emergency Transportation Planning Problem 1236.3.2 A BBO Algorithm for the Problem 1246.3.3 Computational Experiments 1256.4 BBO for Emergency Railway Wagon Scheduling 1276.4.1 An Emergency Railway Wagon Scheduling Problem 1286.4.2 A Hybrid BBO/DE Algorithm for the Problem 1316.4.3 Computational Experiments 1346.5 BBO for Emergency Air Transportation 1376.5.1 An Emergency Air Transportation Problem 1376.5.2 BHS and EBO Algorithms for the Problem 1396.5.3 Computational Experiments 1396.6 Summary 140References 1417 Application of Biogeography-Based Optimization in Job Scheduling 1437.1 Introduction 1437.2 BBO for Flow-Shop Scheduling 1437.2.1 Flow-Shop Scheduling Problem 1437.2.2 A BBO Algorithm for FSP 1467.2.3 Computational Experiments 1477.3 BBO for Job-Shop Scheduling 1497.3.1 Job-Shop Scheduling Problem 1497.3.2 An Enhanced BBO Algorithm for the Problem 1517.3.3 Computational Experiments 1537.4 BBO for Maintenance Job Assignment and Scheduling 1567.4.1 A Maintenance Job Assignment and Scheduling Problem 1567.4.2 A Multi-objective BBO Algorithm for the Problem 1587.4.3 Computational Experiments 1607.5 BBO for University Course Timetabling 1637.5.1 A University Course Timetabling Problem 1637.5.2 A Discrete EBO Algorithm for UCTP 1667.5.3 Computational Experiments 1697.6 Summary 173References 1738 Application of Biogeography-Based Optimization in Image Processing 1778.1 Introduction 1778.2 BBO for
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服