扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
Algebra(代数 第3版) 版权信息
- ISBN:9787519255756
- 条形码:9787519255756 ; 978-7-5192-5575-6
- 装帧:简裝本
- 册数:暂无
- 重量:暂无
- 所属分类:>>
Algebra(代数 第3版) 内容简介
本书是一部很有影响力的研究生教材,全面介绍了代数的基本概念。本书的突出特点是书中不但保留了代数的经典内容,同时也介绍了从 范畴理论和同调代数思考的学习方式,各章有大量习题。本书可做为研究生教材,学时一年。
Algebra(代数 第3版) 目录
Part One The Basic Objects of Algebra
Chapter I Groups
1. Monoids
2. Groups
3. Normal subgroups
4. Cyclic groups
5. Operations of a group on a set
6. Sylow subgroups
7. Direct sums and free abelian groups
8. Finitely generated abelian groups
9. The dual group
10. Inverse limit and completion
11. Categories and functors
12. Free groups
Chapter II Rings
1. Rings and homomorphisms
2. Commutative rings
3. Polynomials and group rings
4. Localization
5. Principal and factorial rings
Chapter III Modules
1. Basic definitions
2. The group of homomorphisms
3. Direct products and sums of modules
4. Free modules
5. Vector spaces
6. The dual space and dual module
7. Modules over principal rings
8. Euler-Poincare maps
9. The snake lemma
10. Direct and inverse limits
Chapter IV Polynomials
1. Basic properties for polynomials in one variable
2. Polynomials over a factorial ring
3. Criteria for irreducibility
4. Hilbert's theorem
5. Partial fractions
6. Symmetric polynomials
7. Mason-Stothers theorem and the abe conjecture
8. The resultant
9. Power series
Part Two Algebraic Equations
Chapter V Algebraic Extensions
1. Finite and algebraic extensions
2. Algebraic closure
3. Splitting fields and normal extensions
4. Separable extensions
5. Finite fields
6. Inseparable extensions
Chapter VI Galois Theory
1. Galois extensions
2. Examples and applications
3. Roots of unity
4. Linear independence of characters
5. The norm and trace
6. Cyclic extensions
7. Solvable and radical extensions
8. Abelian Kummer theory
9. The equation X\
Chapter I Groups
1. Monoids
2. Groups
3. Normal subgroups
4. Cyclic groups
5. Operations of a group on a set
6. Sylow subgroups
7. Direct sums and free abelian groups
8. Finitely generated abelian groups
9. The dual group
10. Inverse limit and completion
11. Categories and functors
12. Free groups
Chapter II Rings
1. Rings and homomorphisms
2. Commutative rings
3. Polynomials and group rings
4. Localization
5. Principal and factorial rings
Chapter III Modules
1. Basic definitions
2. The group of homomorphisms
3. Direct products and sums of modules
4. Free modules
5. Vector spaces
6. The dual space and dual module
7. Modules over principal rings
8. Euler-Poincare maps
9. The snake lemma
10. Direct and inverse limits
Chapter IV Polynomials
1. Basic properties for polynomials in one variable
2. Polynomials over a factorial ring
3. Criteria for irreducibility
4. Hilbert's theorem
5. Partial fractions
6. Symmetric polynomials
7. Mason-Stothers theorem and the abe conjecture
8. The resultant
9. Power series
Part Two Algebraic Equations
Chapter V Algebraic Extensions
1. Finite and algebraic extensions
2. Algebraic closure
3. Splitting fields and normal extensions
4. Separable extensions
5. Finite fields
6. Inseparable extensions
Chapter VI Galois Theory
1. Galois extensions
2. Examples and applications
3. Roots of unity
4. Linear independence of characters
5. The norm and trace
6. Cyclic extensions
7. Solvable and radical extensions
8. Abelian Kummer theory
9. The equation X\
展开全部
Algebra(代数 第3版) 作者简介
本书作者S.朗(S. Lang)是美国耶鲁大学教授,撰写的经典教材学术著作等身,《代数》是作者的代表作之一,堪称数学领域的经典教材。
书友推荐
本类畅销
-
无理数引论
¥23¥58 -
高等代数-第五版
¥18.5¥28.2 -
4.23文创礼盒A款--“作家言我精神状态”
¥42.3¥206 -
4.23文创礼盒B款--“作家言我精神状态”
¥42.3¥206 -
一句顶一万句 (印签版)
¥40.4¥68 -
百年书评史散论
¥14.9¥38