超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
方程组实数解的几何方法

方程组实数解的几何方法

作者:FrankSottile
出版社:高等教育出版社出版时间:2018-08-01
开本: 16开 页数: 200
本类榜单:教材销量榜
中 图 价:¥159.2(8.0折) 定价  ¥199.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

方程组实数解的几何方法 版权信息

方程组实数解的几何方法 内容简介

对方程组的实数解的理解、求解甚至仅仅确定解的存在性都是一个非常困难的问题,并且在数学以外的领域有着诸多应用。尽管总体上我们不抱太大的希望,但令人惊喜的是,我们发现相当一部分拥有额外结构的方程组常常与几何相关。 本书重点讨论基于环簇和Grassmann流形构建的方程组。这是由于不仅这些理论为人们所熟知,而且所涉及的方程组在应用中常见。全书共分三个主题:实数解个数的上界、实数解个数的下界、所有解均为实数的方程组的几何问题。本书首先给出一个概述,包括单变量多项式方程组的实数解以及稀疏多项式方程组的几何结构的背景知识;前半部分讲述稀疏多项式方程组的“少”项式(fewnomial)上界及下界;后半部分先选取了一些所有解均为实数的方程组的几何问题,然后在*后五章介绍Shapiro猜想,其中相关的多项式方程组只有实数解。 本书适合于对实代数几何感兴趣的研究生和专业研究人员阅读。

方程组实数解的几何方法 目录

Preface Chapter 1. Overview 1.1. Introduction 1.2. Polyhedral bounds 1.3. Upper bounds 1.4. The Wronski map and the Shapiro Conjecture 1.5. Lower bounds Chapter 2. Real Solutions to Univariate Polynomials 2.1. Descartes's rule of signs 2.2. Sturm's Theorem 2.3. A topological proof of Sturm's Theorem Chapter 3. Sparse Polynomial Systems 3.1. Polyhedral bounds 3.2. Geometric interpretation of sparse polynomial systems 3.3. Proof of Kushnirenko's Theorem 3.4. Facial systems and degeneracies Chapter 4. Torie Degenerations and Kushnirenko's Theorem 4.1. Kushnirenko's Theorem for a simplex 4.2. Regular subdivisions and toric degenerations 4.3. Kushnirenko's Theorem via toric degenerations 4.4. Polynomial systems with only real solutions Chapter 5. Fewnomial Upper Bounds 5.1. Khovanskii's fewnomial bound 5.2. Kushnirenko's Conjecture 5.3. Systems supported on a circuit Chapter 6. Fewnomial Upper Bounds from Gale Dual Polynomial Systems 6.1. Gale duality for polynomial systems 6.2. New fewnomial bounds 6.3. Dense fewnomials Chapter 7. Lower Bounds for Sparse Polynomial Systems 7.1. Polynomial systems as fibers of maps 7.2. Orientability of real toric varieties 7.3. Degree from foldable triangulations 7.4. Open problems Chapter 8. Some Lower Bounds for Systems of Polynomials 8.1. Polynomial systems from posets 8.2. Sagbi degenerations 8.3. Incomparable chains, factoring polynomials, and gaps Chapter 9. Enumerative Real Algebraic Geometry 9.1. 3264 real conics 9.2. Some geometric problems 9.3. Schubert Calculus Chapter 10. The Shapiro Conjecture for Grassmannians 10.1. The Wronski map and Schubert Calculus 10.2. Asymptotic form of the Shapiro Conjecture 10.3. Grassmann duality Chapter 11. The Shapiro Conjecture for Rational Functions 11.1. Nets of rational functions 11.2. Schubert induction for rational functions and nets 11.3. Rational functions with prescribed coincidences Chapter 12. Proof of the Shapiro Conjecture for Grassmannians 12.1. Spaces of polynomials with given Wronskian 12.2. The Gaudin model 12.3. The Bethe Ansatz for the Gaudin model 12.4. Shapovalov form and the proof of the Shapiro Conjecture Chapter 13. Beyond the Shapiro Conjecture for the Grassmannian 13.1. Transversality and the Discriminant Conjecture 13.2. Maximally inflected curves 13.3. Degree of Wronski maps and beyond 13.4. The Secant Conjecture Chapter 14. The Shapiro Conjecture Beyond the Grassmannian 14.1. The Shapiro Conjecture for the orthogonal Grassmannian 14.2. The Shapiro Conjecture for the Lagrangian Grassmannian 14.3. The Shapiro Conjecture for flag manifolds 14.4. The Monotone Conjecture 14.5. The Monotone Secant Conjecture Bibliography Index of Notation Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服