超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
POWER BI商业数据分析项目实战

POWER BI商业数据分析项目实战

作者:武俊敏
出版社:电子工业出版社出版时间:2019-03-01
开本: 其他 页数: 336
中 图 价:¥43.9(5.5折) 定价  ¥79.8 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

POWER BI商业数据分析项目实战 版权信息

POWER BI商业数据分析项目实战 本书特色

本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以业务案例为导向,以Power BI桌面版操作为基础进行讲解,深入讲述Power BI在各个业务部门的应用。本书包括7篇共21章内容,分业务场景进行讲解。第1篇用1章内容讲述Power BI基础操作,方便读者快速入门;第2篇用4章内容讲述如何用Power BI爬取天气、电影、销售、股票等数据;第3篇用4章内容讲述销售部门如何用Power BI分解销售目标,分析业绩达成、会员RFM和业绩构成;第4篇用5章内容讲述产品相关应用,包括存货分析、帕累托分析、关联分析、畅销款分析和数据化陈列;第5篇用2章内容讲述在财务方面的应用,包括盈亏平衡分析和上市公司利润表分析;第6篇用3章内容讲述人力资源应用,包括人员结构及离职率分析、新员工分析和考勤分析;第7篇用2章内容讲述简化报告的技巧。

POWER BI商业数据分析项目实战 内容简介

本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以业务案例为导向,以Power BI桌面版操作为基础进行讲解,深入讲述Power BI在各个业务部门的应用。本书包括7篇共21章内容,分业务场景进行讲解。篇用1章内容讲述Power BI基础操作,方便读者快速入门;第2篇用4章内容讲述如何用Power BI爬取天气、电影、销售、股票等数据;第3篇用4章内容讲述销售部门如何用Power BI分解销售目标,分析业绩达成、会员RFM和业绩构成;第4篇用5章内容讲述产品相关应用,包括存货分析、帕累托分析、关联分析、畅销款分析和数据化陈列;第5篇用2章内容讲述在财务方面的应用,包括盈亏平衡分析和上市公司利润表分析;第6篇用3章内容讲述人力资源应用,包括人员结构及离职率分析、新员工分析和考勤分析;第7篇用2章内容讲述简化报告的技巧。

POWER BI商业数据分析项目实战 目录

目 录



第1篇 Power BI基础
第1章 Power BI基础操作 2
1.1 Power BI的主要组件及功能 2
1.1.1 Power Query简介 2
1.1.2 Power Pivot简介 3
1.1.3 Power BI Desktop简介 3
1.1.4 各组件应用场景 4
1.2 一个入门案例——搭建动态销售报告 4
1.2.1 数据源结构 5
1.2.2 导入销售数据 6
1.2.3 合并销售数据 8
1.2.4 筛选行去除重复表头 10
1.2.5 将**行用作标题 11
1.2.6 向下填充补充空白内容 11
1.2.7 重复列 12
1.2.8 按字符数和分隔符拆分列 13
1.2.9 重命名列 14
1.2.10 添加年、月等形式的日期列 15
1.2.11 导入店铺资料及销售目标数据 16
1.2.12 合并销售明细与销售目标 17
1.2.13 禁用“启用加载” 20
1.2.14 建立关系 21
1.2.15 新建列 22
1.2.16 新建度量值 23
1.2.17 制作可视化报告:切片器 26
1.2.18 制作可视化报告:卡片图 28
1.2.19 制作可视化报告:条形图与柱形图 29
1.2.20 制作可视化报告:环形图 31
1.2.21 制作可视化报告:散点图 32
1.2.22 制作可视化报告:表 33
1.2.23 制作可视化报告:编辑交互 34
1.2.24 制作可视化报告:典型自定义图表介绍 36
1.3 总结 37
1.4 延伸阅读:DAX函数索引 38
第2篇 爬虫案例
第2章 抓取历史天气数据 42
2.1 分析URL结构 43
2.1.1 确定城市列表 43
2.1.2 确定单月URL 44
2.2 构建爬虫主体 44
2.2.1 建立城市列表 45
2.2.2 建立日期列表 46
2.2.3 城市、日期参数引入URL 50
2.3 制作可视化报告 54
2.3.1 隐藏不需要的字段 54
2.3.2 制作城市和月份切片器 55
2.3.3 设置*高气温走势两年对比 55
2.3.4 设置当月气温走势 56
2.3.5 设置气温明细矩阵 57
2.4 总结 58
2.5 延伸阅读:常用的日期型M函数 58
2.5.1 动态提取当前日期 59
2.5.2 计算上月月底 59

第3章 抓取豆瓣电影数据 62
3.1 分析网页结构 62
3.1.1 分析URL规律 63
3.1.2 分析页面内容 64
3.2 创建爬虫主体 64
3.2.1 构建爬虫函数 64
3.2.2 构建页码列表 68
3.2.3 页码列表引入函数 70
3.3 制作可视化报告 72
3.3.1 区分排名和评分区间 72
3.3.2 按列排序 74
3.3.3 制作排名区间和评分区间切片器 76
3.3.4 建立明细表 76
3.4 总结 77
第4章 抓取球鞋销售数据 78
4.1 分析网页结构 79
4.1.1 分析URL规律 79
4.1.2 分析JSON数据内容 80
4.2 创建爬虫主体 82
4.2.1 构建爬虫函数 82
4.2.2 构建页码列表 85
4.2.3 页码列表引入函数 86
4.3 制作可视化报告 87
4.3.1 建立度量值 87
4.3.2 制作品牌Logo式切片器 88
4.3.3 建立关系 89
4.3.4 制作品牌环形图 90
4.3.5 制作类别折线和簇状柱形图 90
4.3.6 建立单品Top10表格 91
4.3.7 款式占比瀑布图 92
4.4 总结 93

第5章 抓取历年股票数据 94
5.1 分析网页结构 95
5.1.1 寻找真实URL 95
5.1.2 分析URL结构 97
5.2 数据导入及处理 97
5.2.1 数据导入 97
5.2.2 数据处理 99
5.3 通过参数获取多公司任意时间段数据 100
5.3.1 新建参数 101
5.3.2 将参数引入URL 102
5.3.3 创建函数 103
5.3.4 新建需要查询的公司列表 104
5.3.5 日期格式变更 105
5.4.6 调用函数 106
5.3.7 日期分组 107
5.4 制作可视化报告 110
5.5 总结 112
第3篇 销售案例
第6章 销售目标分解 116
6.1 制定销售系数表 117
6.1.1 汇总销售数据 117
6.1.2 构建销售系数 119
6.1.3 新建销售系数表 121
6.2 分解销售目标 121
6.2.1 构建完整日期列表 121
6.2.2 建立关系 122
6.2.3 引入销售系数和当月销售总目标 123
6.2.4 计算当月每天销售占比 124
6.2.5 计算每天的销售目标 124
6.3 总结 125
6.4 延伸阅读:时间进度动态甘特图 126

第7章 业绩达成分析 128
7.1 创建日期表 129
7.1.1 使用Excel文件创建日期表 129
7.1.2 使用DAX函数创建日期表 130
7.1.3 使用M函数创建日期表 132
7.2 计算同比、环比、累计销售 133
7.2.1 计算同比 134
7.2.2 计算环比 135
7.2.3 计算累计销售额 136
7.3 制作可视化报告 137
7.3.1 设置业绩完成率图表 138
7.3.2 设置同比_YTD图表 141
7.3.3 制作业绩走势图 142
7.3.4 按色阶设置同比背景色 143
7.3.5 按度量值设置环比和同比_YTD背景色 144
7.4 总结 145
7.5 延伸阅读:在PPT中展示Power BI动态图表 145
7.5.1 Power BI Tiles插件安装 146
7.5.2 Power BI Tiles插件使用 146
7.5.3 Power BI Tiles细节调整 147
第8章 会员RFM分析 150
8.1 DAX函数构建RFM模型 151
8.1.1 确定RFM值 151
8.1.2 确定会员类型 152
8.2 制作可视化报告 155
8.2.1 设置会员占比图表 155
8.2.2 设置会员数量图表 155
8.2.3 设置会员业绩贡献度图表 156
8.2.4 设置会员消费明细图表 157
8.3 总结 158
第9章 业绩杜邦分析法 159
9.1 建立各指标度量值 161
9.1.1 创建存放度量值的空表 161
9.1.2 建立关系 162
9.1.3 新建各指标度量值 163
9.2 新建变量参数 164
9.2.1 新建参数 164
9.2.2 设置其他假设度量值 166
9.2.3 卡片图展示相关度量值 166
9.3 总结 167
第4篇 货品案例
第10章 存货分析 170
10.1 存货库存概况 170
10.1.1 建立度量值与辅助列 171
10.1.2 制作可视化报告:年份、季节切片器 173
10.1.3 制作可视化报告:库存数量、库存金额、款式数量、零星款式数量卡片图 175
10.1.4 制作可视化报告:年份、季节、性别环形图 176
10.1.5 制作可视化报告:产品类别折线和簇状柱形图 177
10.1.6 制作可视化报告:货龄区间瀑布图 177
10.2 存货销售概况 179
10.2.1 建立度量值与辅助列 179
10.2.2 制作可视化报告 181
10.3 存货仓位 183
10.3.1 查询条件及货品明细设置 183
10.3.2 仓库平面图设置 185
10.4 总结 188
10.5 延伸阅读:图表展现的不一定是真相 188
10.5.1 谜之坐标 188
10.5.2 辛普森悖论 189
第11章 帕累托分析 191
11.1 帕累托图 192
11.1.1 建立累计销售额和销售占比度量值 192
11.1.2 制作帕累托图 193
11.2 前20%销售占比矩阵 195
11.2.1 建立前20%累计销售额和销售占比度量值 195
11.2.2 制作前20%销售占比矩阵图 196
11.3 总结 196
11.4 延伸阅读:ALL、ALLSELETCED的区别 197
第12章 关联分析 200
12.1 模型搭建 201
12.1.1 复制产品信息 201
12.1.2 汇总销售明细 202
12.1.3 销售单编号引入产品信息查询 202
12.1.4 合并产品信息与关联产品信息 204
12.1.5 剔除本身货号 205
12.1.6 去除“关联产品信息”加载 206
12.1.7 计算销售笔数、共同销售笔数、所占比例 206
12.1.8 建立关系 207
12.2 制作可视化报告 207
12.2.1 制作明细表和卡片图 208
12.2.1 制作矩阵图 208
12.3 总结 209
第13章 畅销款分析 211
13.1 畅销款的业务逻辑 211
13.1.1 售罄率高并不代表畅销 211
13.1.2 销售数量高也不代表畅销 212
13.1.3 结合时间因素判断商品是否畅销 212
13.2 构建畅销品分析模型 213
13.2.1 计算达到50%售罄时的销售天数 213
13.2.2 计算达到50%售罄时的销量 215
13.2.3 统计畅销款 215
13.3 总结 218
13.4 延伸阅读:DAX书写规范工具 219
第14章 数据化陈列 220
14.1 陈列面积规划 220
14.1.1 设置权重参数 221
14.1.2 建立基础度量值 222
14.1.3 计算建议陈列占比 223
14.1.4 制作建议陈列面积树状图 224
14.1.5 制作陈列占比矩阵 225
14.2 单品陈列规划 226
14.2.1 单款排名分组 227
14.2.2 制作金靴银靴切片器 229
14.2.3 制作星级展示表格 231
14.3 总结 234
第5篇 财务案例
第15章 盈亏平衡分析 236
15.1 新建变量参数 237
15.2 建立逻辑关系 239
15.2.1 新建度量值存放空表 239
15.2.2 计算成本 239
15.2.3 计算净利润及净利润率 240
15.2.4 计算盈亏平衡销售额 240
15.3 总结 241
第16章 上市公司利润表分析 242
16.1 建立利润明细表 243
16.1.1 数据导入及整理 243
16.1.2 制作金额单位切片器及明细矩阵 247
16.2 利润表分析 249
16.2.1 设置基础度量值 251
16.2.2 设置率值相关度量值 251
16.2.3 设置卡片图 251
16.2.4 设置柱形图和折线图 252
16.2.5 计算同比 252
16.3 总结 254
16.4 延伸阅读:VAR RETURN简化DAX书写 255

第6篇 人力资源案例
第17章 人员结构及离职率分析 258
17.1 人员结构分析 258
17.1.1 搭建人员结构模型 259
17.1.2 制作人员结构可视化报告 262
17.2 离职率分析 263
17.2.1 计算离职率 264
17.2.2 制作离职率可视化报告 264
17.3 总结 265
第18章 新员工分析 267
18.1 新员工概况分析 268
18.1.1 搭建新员工概况模型 268
18.1.2 制作新员工概况可视化报告 272
18.2 新员工个人仪表盘 273
18.2.1 设置员工工号切片器 273
18.2.2 设置培训信息提示 274
18.2.3 设置考试成绩雷达图 274
18.2.4 设置显示人员范围 275
18.3 总结 276
第19章 考勤分析 277
19.1 全勤分析 277
19.1.1 对考勤日期分类 278
19.1.2 计算每天每个员工的上班小时数 279
19.
展开全部

POWER BI商业数据分析项目实战 作者简介

武俊敏,服饰零售业资深从业人士,先后在大型休闲和运动服饰公司多个岗位任职,擅长数据分析以及针对业务问题开发自动化解决方案。曾为多个分公司同事进行Power BI培训,并长期在知乎、微信公众号分享Power BI实战经验。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服