超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >
Evolutionary Algorithm Based Ontology Matching...

Evolutionary Algorithm Based Ontology Matching...

作者:薛醒思
出版社:科学出版社出版时间:2019-02-01
开本: 16开 页数: 120
中 图 价:¥62.4(6.3折) 定价  ¥99.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Evolutionary Algorithm Based Ontology Matching... 版权信息

  • ISBN:9787030601933
  • 条形码:9787030601933 ; 978-7-03-060193-3
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>

Evolutionary Algorithm Based Ontology Matching... 内容简介

薛醒思、陈俊风、潘正祥主编的《基于进化算法的本体匹配技术(英文版)》描述了领域间的概念以及概念间的关系,是解决语义网上数据异质问题的方案。但是由于人类的主观性,同一个实体在不同本体中可能拥有不同的名称和描述方式,使得本体间存在异质问题。给定两个描述一系列离散的实体(实体可能是概念、关系和实例)的本体,确定这些本体间的关系的过程称为本体匹配,本体匹配可以有效地解决本体异质问题。当本体中的实体规模庞大的时候,本体匹配问题是一个复杂的(非线性问题且有很多局部*优解)和费时的(大规模问题)问题,因此近似的求解方法通常被用于确定本体匹配结果。源自这一观点,进化算法成为了求解本体匹配问题的有效方法。本书首先为本体概念层和实例层构建了不同的单目标、多目标和众目标模型,然后针对性地给出了各种进化算法(如混合进化算法,NSGA-II和MOEA/D)来求解这些模型。*后,还描述了各种提高基于进化算法的本体匹配技术性能的方法,如本体划分算法、紧凑编码方案、并行匹配框架和元模型辅助策略等,这些方法可以显著地减少运行时、内存消耗和算法所需的评价次数。

Evolutionary Algorithm Based Ontology Matching... 目录

Chapter 1 Evolutionary Algorithm based Ontology Schema-level Matching Technique 1.1 Preliminaries 1.1.1 Ontology, Ontology Matching, Ontology Alignment 1.1.2 Similarity Measure 1.2 Optimizing Ontology Alignments through Memetic Algorithm Using both MatchFmeasure and Unanimous Improvement Ratio 1.2.1 MatchFmeasure and Unanimous Improvement Ratio 1.2.2 MA Using MatchFmeasure and UIR 1.2.3 Experimental Results and Analysis 1.2.4 Conclusion and Future Work 1.3 Using Problem-speciˉc MOEA/D for Optimizing Ontology Alignments 1.3.1 Multi-Objective Ontology Matching Problem 1.3.2 MOEA/D for Optimizing Ontology Alignments 1.3.3 Experimental Results and Analysis 1.3.4 Conclusion and Future Work Chapter 2 Evolutionary Algorithm based Ontology Instance-level Matching Technique 2.1 Using Memetic Algorithm for Instance Coreference Resolution 2.1.1 Similarity Measure for Instance Coreference Resolution 2.1.2 Memetic Algorithm for Instance Coreference Resolution 2.1.3 Experimental Results and Analysis 2.1.4 Conclusion and Future Work 2.2 Many-Objective Instance Matching in Linked Open Data 2.2.1 Many-Objective Instance Matching 2.2.2 NSGA-III based Many-Objective Instance Matching 2.2.3 Experimental Studies and Analysis 2.2.4 Conclusion and Future Work Chapter 3 Improving the Performance of Evolutionary Algorithm based Ontology Matching Technique 3.1 An Alignment-Oriented Segmenting Approach for Optimizing Large Scale Ontology Alignments 3.1.1 The Framework of Segment-based Large Scale Ontology Matching Approach 3.1.2 Source Ontology Partition 3.1.3 Target Ontology Segment Determination 3.1.4 Ontology Segment Matching through the Hybrid Evolutionary Algorithm 3.1.5 Experimental Results and Analysis 3.1.6 Conclusion 3.2 E±cient Ontology Matching Using Meta-Model assisted NSGA-II 3.2.1 Error Ratio based Dynamic Alignment Candidates Selection Strategy 3.2.2 NSGA-II for Optimizing Ontology Alignment 3.2.3 Gaussian Random Field Model 3.2.4 Experimental Results and Analysis 3.2.5 Conclusion and Future Work 3.3 Using Compact Memetic Algorithm for Optimizing Ontology Alignment 3.3.1 Hybrid Population-based Incremental Learning Algorithm 3.3.2 Experimental Studies and Analysis 3.3.3 Conclusion and Future Work Reference
展开全部

Evolutionary Algorithm Based Ontology Matching... 作者简介

薛醒思(Xingsi Xue),received the Ph.D. degree in Computer Application Technology from Xidian University, in 2014. He is a professor at College of Information Science and Engineering, Intelligent Information Processing Research Center, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian Key Lab for Automotive Electronics and Electric Drive, Fujian University of Technology. He is a member of IEEE and ACM, and won 2017 ACM Xi'an Rising Star Award and IIH-MSP 2016 excellent paper award, 陈俊风(Junfeng Chen),received the Ph.D. degree from the College of Control Science and Engineering, Zhejiang University in 2011. Currently, she is an associate professor in the College of loT Engineering, Hohai University. She is a member of IEEE and ACM. 潘正祥(Jeng-Shyang Pan),received the Ph D. degree in Electrical Engineering from the University of Edinburgh in 1996. He is a professor at the College of Information Science and Engineering, Intelligent Information Processing Research Center, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian Key Lab for Automotive Electronics and Electric Drive, Fujian University of Technology. He was offered the Thousand Talents Plan in China in 2010.

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服