超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
美国数学会经典影印系列谱图论(影印版)

美国数学会经典影印系列谱图论(影印版)

出版社:高等教育出版社出版时间:2018-08-01
开本: 16开 页数: 212
本类榜单:教材销量榜
中 图 价:¥79.2(8.0折) 定价  ¥99.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

美国数学会经典影印系列谱图论(影印版) 版权信息

美国数学会经典影印系列谱图论(影印版) 本书特色

《谱图论(影印版 英文版)》基于1994年在加州州立大学Fresno分校举办的谱图论研讨会的10次讲座,行文漂亮,表述优雅。
  阅读《谱图论(影印版 英文版)》就好像是与一位好老师对话:不仅告诉你表面的事实,还带你探究其内在运行的本质,为何值得去做,以及它与其他领域中熟识的思想的联系。
  《谱图论(影印版 英文版)》可供谱图论方向的研究人员参考,也适合于有兴趣学习这个数学领域的非专业人士阅读。

美国数学会经典影印系列谱图论(影印版) 内容简介

本书基于1994 年在加州州立大学Fresno分校举办的谱图论研讨会的10 次讲座,行文漂亮,表述优雅。阅读这本优秀著作就好像是与一位好老师对话:不仅告诉你表面的事实,还带你探究其内在运行的本质,为何值得去做,以及它与其他领域中熟识的思想的联系。本书可供谱图论方向的研究人员参考,也适合于有兴趣学习这个数学领域的非专业人士阅读。

美国数学会经典影印系列谱图论(影印版) 目录

Preface Chapter 1. Eigenvalues and the Laplacian of a graph 1.1. Introduction 1.2. The Laplacian and eigenvalues 1.3. Basic facts about the spectrum of a graph 1.4. Eigenvalues of weighted graphs 1.5. Eigenvalues and random walks Chapter 2. Isoperimetric problems 2.1. History 2.2. The Cheeger constant of a graph 2.3. The edge expansion of a graph 2.4. The vertex expansion of a graph 2.5. A characterization of the Cheeger constant 2.6. Isoperimetric inequalities for cartesian products Chapter 3. Diameters and eigenvalues 3.1. The diameter of a graph 3.2. Eigenvalues and distances between two subsets 3.3. Eigenvalues and distances among many subsets 3.4. Eigenvalue upper bounds for manifolds Chapter 4. Paths, flows, and routing 4.1. Paths and sets of paths 4.2. Flows and Cheeger constants 4.3. Eigenvalues and routes with small congestion 4.4. Routing in graphs 4.5. Comparison theorems Chapter 5. Eigenvalues and quasi-randomness 5.1. Quasi-randomness 5.2. The discrepancy property 5.3. The deviation of a graph 5.4. Quasi-random graphs Chapter 6. Expanders and explicit constructions 6.1. Probabilistic methods versus explicit constructions 6.2. The expanders 6.3. Examples of explicit constructions 6.4. Applications of expanders in communication networks 6.5. Constructions of graphs with small diameter and girth 6.6. Weighted Laplacians and the Lovasz v function Chapter 7. Eigenvalues of symmetrical graphs 7.1. Symmetrical graphs 7.2. Cheeger constants of symmetrical graphs 7.3. Eigenvalues of symmetrical graphs 7.4. Distance transitive graphs 7.5. Eigenvalues and group representation theory 7.6. The vibrational spectrum of a graph Chapter 8. Eigenvalues of subgraphs with boundary conditions 8.1. Neumann eigenvalues and Dirichlet eigenvalues 8.2. The Neumann eigenvatues of a subgraph 8.3. Neumann eigenvalues and random walks 8.4. Dirichlet eigenvalues 8.5. A matrix-tree theorem and Dirichlet eigenvalues 8.6. Determinants and invariant field theory Chapter 9. Harnack inequalities 9.1. Eigenfunctions 9.2. Convex subgraphs of homogeneous graphs 9.3. A Harnack inequality for homogeneous graphs 9.4. Harnack inequalities for Dirichlet eigenvalues 9.5. Harnack inequalities for Neumann eigenvalues 9.6. Eigenvalues and diameters Chapter 10. Heat kernels 10.1. The heat kernel of a graph and its induced subgraphs 10.2. Basic facts on heat kernels 10.3. An eigenvMue inequality 10.4. Heat kernel lower bounds 10.5. Matrices with given row and column sums 10.6. Random walks and the heat kernel Chapter 11. Sobolev inequalities 11.1. The isoperimetric dimension of a graph 11.2. An isoperimetric inequality 11.3. Sobolev inequalities 11.4. Eigenvalue bounds 11.5. Generalizations to weighted graphs and subgraphs Chapter 12. Advanced techniques for random walks on graphs 12.1. Several approaches for bounding convergence 12.2. Logarithmic Sobolev inequalities 12.3. A comparison theorem for the log-Sobolev constant 12.4. Logarithmic Harnack inequalities 12.5. The isoperimetric dimension and the Sobolev inequality Bibliography Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服