扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
法律的悖论(签章版)
-
>
中华人民共和国宪法
-
>
中华人民共和国劳动法
-
>
私人财富保护、传承与工具
-
>
再审洞穴奇案
-
>
法医追凶:破译犯罪现场的156个冷知识
-
>
法医追凶:侦破罪案的214个冷知识
买过本商品的人还买了
轮胎花纹图像检索 版权信息
- ISBN:9787030593528
- 条形码:9787030593528 ; 978-7-03-059352-8
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:>
轮胎花纹图像检索 内容简介
在各种图像中,轮胎图案是犯罪现场调查中重要的图像数据类型。轮胎花纹图像检索(TPIR)是提供使用的重要手段,也是交通事故控制和犯罪案件解决的充分线索。 刘颖著的《轮胎花纹图像检索(英文版)》的目的是总结现有技术在TPIR。本书重点研究了纹理特征提取的关键技术。 本书内容包括胎面花纹识别的主要技术类别检索、胎面磨损特征提取、轮胎压痕标记检索和视频胎面花纹检索。
轮胎花纹图像检索 目录
Contents
Preface
List of Abbreviations
Chapter 1 Introduction 1
1.1 Background 1
1.2 Contribution of This Book 2
1.3 Organization of This Book 3
References 4
Chapter 2 A Survey of Image Retrieval Techniques for Tire Pattern Database 6
2.1 Introduction 6
2.2 Tire Pattern Database and Performance Evaluation Methods 7
2.2.1 Tire pattern image databases 8
2.2.2 Performance evaluation 12
2.3 Tire Pattern Retrieval 16
2.3.1 Tire tread pattern retrieval 16
2.3.2 Tire surface wear feature extraction 21
2.3.3 Video tire pattern retrieval 23
2.3.4 Tire indentation mark image retrieval 24
2.3.5 Summary 27
2.4 Discussion about Future Research Directions 29
2.4.1 Standard test dataset and performance evaluation 29
2.4.2 Matching between tire indentation mark and tire tread pattern 30
2.5 Conclusions 30
References 31
Chapter 3 A Modified Tamura Feature for Tire Pattern Image Description 39
3.1 Introduction of Tamura Feature 39
3.2 Modification of Tamura Texture Feature 40
3.2.1 Tamura texture feature 40
3.2.2 Modification 44
3.3 Experimental Results 47
3.4 Conclusions 49
References 49
Chapter 4 H-SIFT: SIFT from High-Frequency Information of Tire Pattern Images 51
4.1 Introduction of SIFT Feature 51
4.2 Review of SIFT Feature 52
4.2.1 Scale space and relevant concepts 53
4.2.2 The model of Gaussian pyramid and difference of Gaussian pyramid 55
4.2.3 The establishment of the key points 57
4.2.4 The key points matching 59
4.3 Description of the Proposed Method H-SIFT 60
4.4 Experimental Results 62
4.5 Conclusions 64
References 64
Chapter 5 Study on Rotation-Invariant Texture Feature Extraction for Tire Pattern Retrieval 66
5.1 Introduction 66
5.2 Radon-DTCWT Algorithm 68
5.2.1 Radon transform 68
5.2.2 Translation sensitivity of ridgelet transform 69
5.2.3 The new Radon-DTCWT algorithm 72
5.3 Curvelet Energy Distribution Algorithm 75
5.3.1 Curvelet transform of tire pattern image 75
5.3.2 Direction characteristics of tire pattern images 76
5.3.3 Implementation of curvelet energy distribution algorithm 78
5.4 Experiment Results 80
5.5 Conclusions 83
References 83
Chapter 6 HOG-TT: A Robust HOG-Based Texture Feature Extraction Method Making Use of Texture Tendency in Tread Pattern Images 86
6.1 Introduction 86
6.2 Description of HOG-TT 88
6.2.1 HOG descriptor 88
6.2.2 HOG-TT 89
6.3 Experimental Results 93
6.4 Conclusions 97
References 97
Chapter 7 FF-TL: An E.ective Tread Pattern Image Classiˉcation Algorithm Based on Transfer Learning 99
7.1 Introduction 99
7.2 Related Work 101
7.2.1 Convolutional neural network 101
7.2.2 Transfer learning 102
7.3 Proposed Algorithm 103
7.3.1 Fine-tuning the network 104
7.3.2 Feature extraction, feature fusion and SVM classification 104
7.4 Experimental Results 105
7.4.1 Experimental dataset and performance evaluation parameter 105
7.4.2 Experimental results and analysis 106
7.5 Conclusions 108
References 109
Chapter 8 Summary and Future Work 113
8.1 Summary of the Book 113
8.2 Discussion of Future Work 115
8.3 Acknowledgment 116
Appendix 1: CIIP Tread Indentation Database 117
Appendix 2: CIIP Tread Pattern Database 118
Preface
List of Abbreviations
Chapter 1 Introduction 1
1.1 Background 1
1.2 Contribution of This Book 2
1.3 Organization of This Book 3
References 4
Chapter 2 A Survey of Image Retrieval Techniques for Tire Pattern Database 6
2.1 Introduction 6
2.2 Tire Pattern Database and Performance Evaluation Methods 7
2.2.1 Tire pattern image databases 8
2.2.2 Performance evaluation 12
2.3 Tire Pattern Retrieval 16
2.3.1 Tire tread pattern retrieval 16
2.3.2 Tire surface wear feature extraction 21
2.3.3 Video tire pattern retrieval 23
2.3.4 Tire indentation mark image retrieval 24
2.3.5 Summary 27
2.4 Discussion about Future Research Directions 29
2.4.1 Standard test dataset and performance evaluation 29
2.4.2 Matching between tire indentation mark and tire tread pattern 30
2.5 Conclusions 30
References 31
Chapter 3 A Modified Tamura Feature for Tire Pattern Image Description 39
3.1 Introduction of Tamura Feature 39
3.2 Modification of Tamura Texture Feature 40
3.2.1 Tamura texture feature 40
3.2.2 Modification 44
3.3 Experimental Results 47
3.4 Conclusions 49
References 49
Chapter 4 H-SIFT: SIFT from High-Frequency Information of Tire Pattern Images 51
4.1 Introduction of SIFT Feature 51
4.2 Review of SIFT Feature 52
4.2.1 Scale space and relevant concepts 53
4.2.2 The model of Gaussian pyramid and difference of Gaussian pyramid 55
4.2.3 The establishment of the key points 57
4.2.4 The key points matching 59
4.3 Description of the Proposed Method H-SIFT 60
4.4 Experimental Results 62
4.5 Conclusions 64
References 64
Chapter 5 Study on Rotation-Invariant Texture Feature Extraction for Tire Pattern Retrieval 66
5.1 Introduction 66
5.2 Radon-DTCWT Algorithm 68
5.2.1 Radon transform 68
5.2.2 Translation sensitivity of ridgelet transform 69
5.2.3 The new Radon-DTCWT algorithm 72
5.3 Curvelet Energy Distribution Algorithm 75
5.3.1 Curvelet transform of tire pattern image 75
5.3.2 Direction characteristics of tire pattern images 76
5.3.3 Implementation of curvelet energy distribution algorithm 78
5.4 Experiment Results 80
5.5 Conclusions 83
References 83
Chapter 6 HOG-TT: A Robust HOG-Based Texture Feature Extraction Method Making Use of Texture Tendency in Tread Pattern Images 86
6.1 Introduction 86
6.2 Description of HOG-TT 88
6.2.1 HOG descriptor 88
6.2.2 HOG-TT 89
6.3 Experimental Results 93
6.4 Conclusions 97
References 97
Chapter 7 FF-TL: An E.ective Tread Pattern Image Classiˉcation Algorithm Based on Transfer Learning 99
7.1 Introduction 99
7.2 Related Work 101
7.2.1 Convolutional neural network 101
7.2.2 Transfer learning 102
7.3 Proposed Algorithm 103
7.3.1 Fine-tuning the network 104
7.3.2 Feature extraction, feature fusion and SVM classification 104
7.4 Experimental Results 105
7.4.1 Experimental dataset and performance evaluation parameter 105
7.4.2 Experimental results and analysis 106
7.5 Conclusions 108
References 109
Chapter 8 Summary and Future Work 113
8.1 Summary of the Book 113
8.2 Discussion of Future Work 115
8.3 Acknowledgment 116
Appendix 1: CIIP Tread Indentation Database 117
Appendix 2: CIIP Tread Pattern Database 118
展开全部
书友推荐
- >
苦雨斋序跋文-周作人自编集
苦雨斋序跋文-周作人自编集
¥6.1¥16.0 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥20.2¥35.0 - >
中国人在乌苏里边疆区:历史与人类学概述
中国人在乌苏里边疆区:历史与人类学概述
¥21.6¥48.0 - >
我从未如此眷恋人间
我从未如此眷恋人间
¥16.9¥49.8 - >
回忆爱玛侬
回忆爱玛侬
¥24.0¥32.8 - >
月亮虎
月亮虎
¥15.4¥48.0 - >
名家带你读鲁迅:故事新编
名家带你读鲁迅:故事新编
¥13.0¥26.0 - >
莉莉和章鱼
莉莉和章鱼
¥14.4¥42.0
本类畅销
-
从《共同纲领》到“八二宪法”
¥36.2¥58 -
变化中的法律与社会
¥40.3¥72 -
法律的悖论(签章版)
¥31.4¥49.8 -
批判法学-一个自由主义的批评
¥15¥20 -
法治在中国-制度.话语与实践-(修订版)
¥23.4¥32 -
国富论:“现代经济学之父”亚当·斯密的传世名作
¥10.9¥38
浏览历史
拜厄钢琴基本教程:少儿教学版
¥35.3¥49.0不可逆转.自我设限和多维空间的经济理论
¥55.0¥75.0室内空间快题设计与表现(第2版)
¥24.5¥69.0大学物理学-上册-(第三版)-C1版
¥22.4¥39.0