扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
全国计算机等级考试最新真考题库模拟考场及详解·二级MSOffice高级应用
-
>
决战行测5000题(言语理解与表达)
-
>
软件性能测试.分析与调优实践之路
-
>
第一行代码Android
-
>
JAVA持续交付
-
>
EXCEL最强教科书(完全版)(全彩印刷)
-
>
深度学习
买过本商品的人还买了
文本分析与文本挖掘 版权信息
- ISBN:9787030591203
- 条形码:9787030591203 ; 978-7-03-059120-3
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 所属分类:>
文本分析与文本挖掘 内容简介
本书讲解了文本分析与文本挖掘的理论和方法, 阐述了词法分析、文本分析、文本挖掘、以及一些相关应用。文本分析与文本挖掘是一个正在发展的领域, 特别是互联网的发展更为该领域研究提出新的需求, 书中相关理论和技术可以直接用于解决具体文本分析与文本挖掘的问题, 也可以用于展示一些典型的理论方法。
文本分析与文本挖掘 目录
目录
第1章 统计中文分词技术 1
1.1 词法分析问题 1
1.2 词典与基于规则分词 4
1.3 仿词识别与*少分词技术 7
1.4 基于词网格的N-gram统计分词技术 11
1.5 数据平滑与专业词抽取 18
1.6 本章小结 25
第2章 词性标注与序列标注 27
2.1 三个序列标注问题 27
2.2 隐马尔可夫序列标注 31
2.3 CRF模型与序列标注 39
2.4 CRF中文词性标注 43
2.5 组合分类器的序列标注方法 46
2.6 实验结果与分析 52
2.7 本章小结 56
第3章 命名实体识别 58
3.1 中文命名实体识别特点与任务描述 58
3.2 ME模型及其适用性 60
3.3 基于ME模型的中文命名实体识别 64
3.4 双层混合模型方法研究 70
3.5 实验结果与分析 74
3.6 本章小结 78
第4章 文本分类技术 80
4.1 文本的向量空间模型 80
4.2 文本相似度与kNN分类 85
4.3 朴素贝叶斯文本分类 93
4.4 朴素贝叶斯分类中的特征缺失补偿策略 96
4.5 基于SVM的文本分类 102
4.6 基于分类技术的歧义消解问题 107
4.7 本章小结 112
第5章 文本聚类技术 114
5.1 聚类方法与文本聚类问题 114
5.2 k-均值与k-中心点文本聚类方法 119
5.3 文本层次聚类方法 124
5.4 基于聚类技术的词义分析 126
5.5 其他聚类方法 130
5.6 本章小结 133
第6章 文本检索技术 135
6.1 Web检索系统构成与文本检索的评价 135
6.2 信息检索模型与布尔模型 138
6.3 向量空间模型与相关性反馈检索模型 140
6.4 扩展的布尔模型与概率模型 145
6.5 信息检索与信息过滤及信息推荐的关系 149
6.6 本章小结 153
第7章 垃圾邮件过滤与情感分析 155
7.1 垃圾邮件过滤问题与框架 155
7.2 朴素贝叶斯垃圾邮件过滤方法 159
7.3 ME模型与SVM垃圾邮件过滤方法 162
7.4 情感分析问题 167
7.5 情感分析方法 172
7.6 本章小结 181
第8章 个性化协同过滤推荐技术 183
8.1 推荐问题提出 183
8.2 通用推荐与个性化推荐 188
8.3 基本协同过滤推荐方法 192
8.4 基于SVD的协同过滤推荐 200
8.5 改进协同过滤推荐方法 207
8.6 本章小结 214
第8第9章 组合推荐技术 215
9.1 基于内容的推荐技术 215
9.2 基于分类技术的推荐方法 219
9.3 基于推理的推荐技术 230
9.4 混合推荐方法 238
9.5 本章小结 242
参考文献 243
第1章 统计中文分词技术 1
1.1 词法分析问题 1
1.2 词典与基于规则分词 4
1.3 仿词识别与*少分词技术 7
1.4 基于词网格的N-gram统计分词技术 11
1.5 数据平滑与专业词抽取 18
1.6 本章小结 25
第2章 词性标注与序列标注 27
2.1 三个序列标注问题 27
2.2 隐马尔可夫序列标注 31
2.3 CRF模型与序列标注 39
2.4 CRF中文词性标注 43
2.5 组合分类器的序列标注方法 46
2.6 实验结果与分析 52
2.7 本章小结 56
第3章 命名实体识别 58
3.1 中文命名实体识别特点与任务描述 58
3.2 ME模型及其适用性 60
3.3 基于ME模型的中文命名实体识别 64
3.4 双层混合模型方法研究 70
3.5 实验结果与分析 74
3.6 本章小结 78
第4章 文本分类技术 80
4.1 文本的向量空间模型 80
4.2 文本相似度与kNN分类 85
4.3 朴素贝叶斯文本分类 93
4.4 朴素贝叶斯分类中的特征缺失补偿策略 96
4.5 基于SVM的文本分类 102
4.6 基于分类技术的歧义消解问题 107
4.7 本章小结 112
第5章 文本聚类技术 114
5.1 聚类方法与文本聚类问题 114
5.2 k-均值与k-中心点文本聚类方法 119
5.3 文本层次聚类方法 124
5.4 基于聚类技术的词义分析 126
5.5 其他聚类方法 130
5.6 本章小结 133
第6章 文本检索技术 135
6.1 Web检索系统构成与文本检索的评价 135
6.2 信息检索模型与布尔模型 138
6.3 向量空间模型与相关性反馈检索模型 140
6.4 扩展的布尔模型与概率模型 145
6.5 信息检索与信息过滤及信息推荐的关系 149
6.6 本章小结 153
第7章 垃圾邮件过滤与情感分析 155
7.1 垃圾邮件过滤问题与框架 155
7.2 朴素贝叶斯垃圾邮件过滤方法 159
7.3 ME模型与SVM垃圾邮件过滤方法 162
7.4 情感分析问题 167
7.5 情感分析方法 172
7.6 本章小结 181
第8章 个性化协同过滤推荐技术 183
8.1 推荐问题提出 183
8.2 通用推荐与个性化推荐 188
8.3 基本协同过滤推荐方法 192
8.4 基于SVD的协同过滤推荐 200
8.5 改进协同过滤推荐方法 207
8.6 本章小结 214
第8第9章 组合推荐技术 215
9.1 基于内容的推荐技术 215
9.2 基于分类技术的推荐方法 219
9.3 基于推理的推荐技术 230
9.4 混合推荐方法 238
9.5 本章小结 242
参考文献 243
展开全部
书友推荐
- >
有舍有得是人生
有舍有得是人生
¥25.7¥45.0 - >
朝闻道
朝闻道
¥14.8¥23.8 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥20.2¥35.0 - >
我与地坛
我与地坛
¥16.4¥28.0 - >
自卑与超越
自卑与超越
¥13.7¥39.8 - >
山海经
山海经
¥18.7¥68.0 - >
二体千字文
二体千字文
¥14.0¥40.0 - >
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
新文学天穹两巨星--鲁迅与胡适/红烛学术丛书(红烛学术丛书)
¥9.9¥23.0
本类畅销
-
这就是ChatGPT
¥41.9¥59.8 -
机器学习
¥47.4¥108 -
深度学习导论
¥24.5¥49 -
正版图书携程人工智能实践
¥51.1¥109 -
TensorFlow实战
¥26.3¥79 -
做好课题申报:AI辅助申请书写作
¥48.9¥69.8
浏览历史
明代外交机构研究
¥41.8¥68.0