图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS

作者:张邦维著
出版社:化学工业出版社出版时间:2019-01-01
开本: 16开 页数: 465
本类榜单:工业技术销量榜
中 图 价:¥235.4(7.9折) 定价  ¥298.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS 版权信息

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS 本书特色

本书以*原始论文为素材,采取从读者出发的角度和态度,将纳米材料学发展现状和水平呈献给广大读者。着浓墨于纳米材料*主要和通常使用的制备方法、纳米材料的结构、它的形成机理、特别是 纳米材料物理性能理论的内容,而且包括了纳米材料的力学、热学、光学、电学、磁学等物理学性能方 面的内容。书中独特地强调了纳米材料的双刃性。

本书没有像其他纳米材料类书籍一样按照纳米材料的种类来编写,而是在作者总结和归纳的基础上 将其共性问题抽提出来进行阐述和讨论,使读者纳米材料的物理基础理论研究进展有了更深入地了解。

本书不仅能够给从事纳米材料研究的科研、技术人员以参考,而且能够拓宽相关专业高年级本科生和研究生的学术视野。

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS 内容简介

本书以很新原始论文为素材,采取从读者出发的角度和态度,将纳米材料学发展现状和水平呈献给广大读者。着浓墨于纳米材料很主要和通常使用的制备方法、纳米材料的结构、它的形成机理、特别是 纳米材料物理性能理论的内容,而且包括了纳米材料的力学、热学、光学、电学、磁学等物理学性能方 面的内容。书中独特地强调了纳米材料的双刃性。 本书没有像其他纳米材料类书籍一样按照纳米材料的种类来编写,而是在作者总结和归纳的基础上 将其共性问题抽提出来进行阐述和讨论,使读者纳米材料的物理基础理论研究进展有了更深入地了解。 本书不仅能够给从事纳米材料研究的科研、技术人员以参考,而且能够拓宽相关专业高年级本科生和研究生的学术视野。

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS 目录

Foreword xi

Preface xiii

Translator’s Preface xv

Preface to the English Version of “Physical Fundamentals of Nanomaterials” xvii

Acknowledgment and Authorization Details for Figures Used in the Book xix

CHAPTER 1 Introduction 1

1.1 Nanomaterial Age 1

1.2 What Are Nanomaterials? 3

1.3 History of Nanomaterial Development 5

1.3.1 Germination Stage 5

1.3.2 Preliminary Preparation Stage 7

1.3.3 Rapid-Development Stage 8

1.3.4 Industrial and Commercial Application Stage 10

1.4 Importance of Nanomaterials 11

1.4.1 Nanotechnology Programs of Leading Countries 11

1.4.2 Nanotechnology Investment Among Leading Countries 11

1.4.3 Analysis of the Importance of Nanotechnology 13

1.5 Potential Problems of Nanomaterials 14

1.6 Purpose of This Book: Fundamentals of Nanomaterial Physics 17

References 18

CHAPTER 2 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes 19

2.1 Principles of Physical Vapor Deposition 20

2.1.1 Nucleation 21

2.1.2 Growth 22

2.2 Physical Vapor Deposition 26

2.2.1 Electrical Resistance Heating Method 26

2.2.2 Plasma Heating Method 29

2.2.3 Laser Heating Method 31

2.3 Chemical Vapor Deposition 38

2.3.1 CVD Thermodynamics and Kinetics 39

2.3.2 CVD Process Technology for Nanomaterial Preparation 42

2.3.3 Catalytic CVD and CNT Preparation 48

2.4 Filtered Cathodic Vacuum Arc Deposition 58

2.4.1 Magnetic Filtration and FCVA Devices 59

2.4.2 Examples of Filtered Cathodic Vacuum Deposition Films 60

2.5 Comparison of Various Vapor Deposition Methods 65

References 66

CHAPTER 3 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared in the Liquid Phase 71

3.1 Precipitation 72

3.1.1 Coprecipitation and Fractional Precipitation 72

3.1.2 Homogeneous Precipitation 75

3.2 Sol-Gel Method 82

3.2.1 Sol-Gel Procedure 83

3.2.2 Sol-Gel Reaction Mechanism 83

3.2.3 Examples of Sol-Gel Prepared Nanomaterials 84

3.3 Chemical-Reduction Method 94

3.3.1 Chemical-Reduction Preparation Technology 94

3.3.2 Chemical-Reduction Reaction Mechanisms 102

3.3.3 Preparation of Crystalline Nanomaterials via Chemical Reduction 103

3.4 Comparison of Various Liquid Nanoparticle Preparation Methods 108

References 109

CHAPTER 4 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Solid-Phase Syntheses 113

4.1 Mechanical Alloying 114

4.1.1 Ball Mill 115

4.1.2 MA Process Parameters 116

4.1.3 MA-Prepared Nanopowder Formation Mechanisms 120

4.1.4 Examples of Nanomaterials Synthesized via Mechanical Alloying 123

4.2 Nanomaterial Preparation via Solid-Phase Methods 127

4.2.1 Preparation of Bulk Nanomaterials via Solid-Phase Methods 128

4.2.2 Amorphous Nanocrystallization 139

4.3 Microstructures and Defects in Body Nanomaterials 153

4.3.1 Grains in Body Nanomaterials 153

4.3.2 Grain Boundaries in Body Nanomaterials 157

4.3.3 Defects in Body Nanomaterials 163

References 172

CHAPTER 5 Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Self-Assembly 177

5.1 What Is Self-Assembly? 178

5.2 Types and Common Characteristics of Self-Assembly Mechanisms 179

5.2.1 Types of Self-Assembly Mechanisms 179

5.2.2 Common Characteristics of Self-Assembly 182

5.3 Nanomaterial Fabrication via Self-Assembly 183

5.3.1 Metal and Alloy Components 183

5.3.2 Semiconductor Components 187

5.3.3 Polymer Supermolecules and Biomolecular Components 192

5.4 Template-Based Nanomaterial Fabrication 202

5.4.1 Fabrication of Ordered Nanohole Templates 202

5.4.2 Metal and Alloy Nanomaterials Prepared via Templated Self-Assembly 204

5.4.3 Preparation of Semiconductor Nanomaterials via Self-Assembly 206

References 209

CHAPTER 6 Mechanical Properties of Nanomaterials 211

6.1 Elasticity of Nanomaterials 212

6.2 Strengths, Hardnesses and HallPetch Relationships in Nanomaterials 216

6.2.1 Experimental Strength Data 217

6.2.2 The Relationship Between Hardness and HallPetch Effects 222

6.3 Nanomaterial Fracture and Fatigue 223

6.3.1 Facture Strength and Toughness 224

6.3.2 Fatigue 226

6.4 Nanomaterial Creep and Superplasticity 229

6.4.1 Creep 230

6.4.2 Superplasticity 237

6.5 Deformation and Fracture Mechanisms in Nanomaterials 242

6.5.1 Nanomaterial Deformation Mechanisms 243

6.5.2 Nanomaterial Fracture Mechanisms 245

References 248

CHAPTER 7 Thermal Properties of Nanomaterials 251

7.1 Melting Point 252

7.1.1 Elevated and Lowered Nanomaterial Melting Points 252

7.1.2 Nanomaterial Melting Point Simulations 253

7.1.3 Melting Enthalpy and Entropy in Nanomaterials 258

7.1.4 Nanoalloy Phase Diagrams 259

7.2 Thermal Conductivity 261

7.2.1 Experimental Measurement of Nanomaterial Thermal Conductivities 261

7.2.2 Theoretical Simulation of Nanomaterial Thermal Conductivity 268

7.3 Specific Heat 270

7.3.1 Debye Temperatures of Nanomaterials 270

7.3.2 Specific Heats of Nanomaterials 276

7.4 Thermal Expansion 281

References 287

CHAPTER 8 Optical Properties of Nanomaterials 291

8.1 Light Absorption of Nanomaterials 292

8.1.1 Instances of Light Absorption Nanomaterials 292

8.1.2 Red- and Blueshift Phenomenon of Light Absorption 294

8.2 Colors of Nanomaterials 298

8.3 Light-Emission of Nanomaterials 301

8.3.1 Quantum Yield 302

8.3.2 Photoluminescence of Nanomaterials 305

8.3.3 Electroluminescence of Nanomaterials 311

8.4 Magnetooptical Properties of Nanomaterials 319

8.4.1 Magnetooptical Effect 319

8.4.2 Magnetooptical Effect of Metal Nanoparticles and Nanoparticle Films 322

8.4.3 Magnetooptical Effect of Oxide Nanoparticles 328

8.4.4 Magnetooptical Effect of Composite Structure of Amorphous Magnetic Nanoparticles 331

References 333

CHAPTER 9 Electrical Properties of Nanometer Materials 337

9.1 Resistivity of Nanomaterials 338

9.1.1 Resistivity of Metal Nanomaterials 338

9.1.2 Resistivity of Alloy Nanomaterials 345

9.1.3 Resistivity of Semiconductor Nanomaterials 347

9.1.4 Resistivity of Oxide Nanomaterials 349

9.2 Theoretical Simulation of Resistivity for Nanomaterials 352

9.2.1 FS and MS Resistivity Theory 352

9.2.2 Theoretical Calculation of Resistivity of Metal Nanowires 353

9.2.3 Empirical Formula for Nanomaterial Resistivity 355

9.3 Thermoelectric Conversion Efficiency of Nanomaterials 356

9.3.1 Thermoelectric Conversion Efficiency and Related Parameters 356

9.3.2 Thermoelectric Conversion Efficiency of Nanomaterials 360

9.3.3 Theoretical Calculations of Conversion Efficiency for Nanothermoelectric Materials 363

9.4 Superconductivity of Nanomaterials 366

9.4.1 Superconductivity of Nanoparticle 366

9.4.2 Superconductivity of Nanofilms 367

9.4.3 Nanowire Superconductivity 373

References 382

CHAPTER 10 Magnetic Properties of Nanomaterials 387

10.1 Magnetic Moment of Nanometer Magnetic Materials 388

10.1.1 Magnetic Moment of 3D Atomic Group Ferromagnetic Metals 388

10.1.2 Magnetic Moment of 3D Ferromagnetic Clusters of Superlattice 392

10.1.3 Magnetic Moments of Nonferromagnetic Three Metal Clusters 396

10.2 Curie Temperature of Nanomagnetic Materials 398

10.2.1 Reduction of Curie Temperature 398

10.2.2 Curie Temperature of Superlattice 402

10.3 Magnetization and Coercivity of Nanometer Magnetic Materials 406

10.3.1 Magnetization 406

10.3.2 Coercivity 413

10.4 Magnetoresistance and Giant Magnetoresistance of Nanometer Magnetic Materials 423

10.4.1 Magnetoresistance and Anisotropic Magnetoresistance 423

10.4.2 Magnetoresistance of Nanometer Manganese Perovskite 426

10.4.3 Giant Magnetoresistance 436

References 446

Index 451
展开全部

纳米材料物理基础:PHYSICAL FUNDAMENTALS OF NANOMATERIALS 作者简介

张邦维,湖南大学应用物理系,教授、博导,材料物理科学家。湖南大学应用物理专业和实验室创始人,中国高等科学技术中心(世界实验室)成员,中国科学院国际材料物理中心长期成员,中国材料研究会高级会员,中国物理学会会员,美国物理学会会员。湖南省第八届政协委员。1992年起享受政府特殊津贴。多次获教学奖。   1958 年毕业于吉林大学物理系,先后在吉林大学、中国科学院金属研究所、湖南大学工作。曾任德国等离子体物理研究所、美国弗吉尼亚大学材料科学系客座教授,并多次到荷兰FOM研究所、美国康莱狄克大学材料科学系做学术报告。提出了有其特色的非晶态合金形成理论,固溶体理论和普适分析型嵌入原子模型理论。创新并系统地研究了数种非晶态和纳米合金系材料。曾获省部级科技进步二等奖2次,三等奖3次。获德国马普奖学金。完成国家自然科学基金、省部委和国际合作科研课题16项,发表学术论文209篇(英文112篇,中文97篇)。

商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服