扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
中医基础理论
-
>
高校军事课教程
-
>
思想道德与法治(2021年版)
-
>
毛泽东思想和中国特色社会主义理论体系概论(2021年版)
-
>
中医内科学·全国中医药行业高等教育“十四五”规划教材
-
>
中医诊断学--新世纪第五版
-
>
中药学·全国中医药行业高等教育“十四五”规划教材
LinearAIgebra线性代数英文版 版权信息
- ISBN:9787563555925
- 条形码:9787563555925 ; 978-7-5635-5592-5
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
LinearAIgebra线性代数英文版 内容简介
《LINEAR ALGEBRA(线性代数 英文版)/普通高等教育“十三五”规划教材》的主要内容是矩阵和行列式、线性方程组、方阵的特征值和特征向量、二次型,共四个章节。第1章先引入矩阵的概念,而后介绍矩阵的基本运算和性质、矩阵的秩和逆、方阵的行列式运算及其性质;第2章介绍线性方程组的解、向量组的线性相关性、正交基;第3章介绍方阵的特征值与特征向量,以及方阵的相似对角化;*后,第4章介绍二次型及其矩阵和将二次型化为标准型的方法。
LinearAIgebra线性代数英文版 目录
Chapter 1 Matrices and Determinants
1.1 Matrices
1.2 Matrix Arithmetic
1.2.1 Equality
1.2.2 Scalar Multiplication
1.2.3 Matrix Addition
1.2.4 Matrix Multiplication
1.2.5 Transpose of a Matrix
1.3 Determinants of Square Matrices
1.3.1 Second Order Determinant
1.3.2 n-th Order Determinant
1.3.3 Properties of Determinants
1.3.4 Evaluation of Determinants
1.3.5 Laplace's Theorem
1.4 Block Matrices
1.4.1 The Concept of Block Matrices
1.4.2 Evaluation of Block Matrices
1.5 Invertible Matrices
1.6 Elementary Matrices
1.6.1 Elementary Operations of Matrices
1.6.2 Elementary Matrices
1.6.3 Use Elementary Operations to Get the Inverse Matrix
1.7 Rank of Matrices
1.8 Exercises
Chapter 2 Systems of Linear Equations
2.1 Systems of Linear Equations
2.2 Vectors
2.3 Linear Independence
2.3.1 Linear Combination
2.3.2 Linear Dependence and Linear Independence
2.4 Maximally Linearly Independent Vector Group
2.4.1 Equivalent Vector Sets
2.4.2 Maximally Linearly Independent Group
2.4.3 The Relationship Between Rank of Matrices and Rank of Vector Sets
2.5 Vector Space
2.6 General Solutions of Linear Systems
2.6.1 General Solutions of Homogenous Linear Systems
2.6.2 General Solutions of Non-homogenous Linear Systems
2.7 Exercises
Chapter 3 Eigenvalues and Eigenveetors
3.1 Eigenvalues and Eigenvectors
3.1.1 Definition of Eigenvalues and Eigenvectors
3.1.2 Properties of Eigenvalues and Eigenvectors
3.2 Diagonalization o{ Square Matrices
3.2.1 Similar Matrix
3.2.2 Diagonalization of Square Matrices
3.3 Orthonormal Basis
3.3.1 Inner Product of Vectors
3.3.2 Orthogonal Set and Basis
3.3.3 Gram-Schmidt Orthogonalization Process
3.3.4 Orthogonal Matrix
3.4 Diagonalization of Real Symmetric Matrices
3.4.1 Properties of Eigenvalues of Real Symmetric Matrices
3.5 Exercises
Chapter 4 Quadratic Form
4.1 Real Quadratic Form and Its Matrix
4.2 Diagonal Form of Quadratic Form
4.3 Diagonal Form of Real Quadratic Form
4.3.1 Changing Quadratic Form into Diagonal Form by Orthogonal Transformation
4.3.2 Changing Quadratic Form into Diagonal Form by the Method of Completing the Square
4.4 Canonical Form of Real Quadratic Form
4.5 Positive Definite Quadratic Form and Matrices
4.6 Exercises
References
1.1 Matrices
1.2 Matrix Arithmetic
1.2.1 Equality
1.2.2 Scalar Multiplication
1.2.3 Matrix Addition
1.2.4 Matrix Multiplication
1.2.5 Transpose of a Matrix
1.3 Determinants of Square Matrices
1.3.1 Second Order Determinant
1.3.2 n-th Order Determinant
1.3.3 Properties of Determinants
1.3.4 Evaluation of Determinants
1.3.5 Laplace's Theorem
1.4 Block Matrices
1.4.1 The Concept of Block Matrices
1.4.2 Evaluation of Block Matrices
1.5 Invertible Matrices
1.6 Elementary Matrices
1.6.1 Elementary Operations of Matrices
1.6.2 Elementary Matrices
1.6.3 Use Elementary Operations to Get the Inverse Matrix
1.7 Rank of Matrices
1.8 Exercises
Chapter 2 Systems of Linear Equations
2.1 Systems of Linear Equations
2.2 Vectors
2.3 Linear Independence
2.3.1 Linear Combination
2.3.2 Linear Dependence and Linear Independence
2.4 Maximally Linearly Independent Vector Group
2.4.1 Equivalent Vector Sets
2.4.2 Maximally Linearly Independent Group
2.4.3 The Relationship Between Rank of Matrices and Rank of Vector Sets
2.5 Vector Space
2.6 General Solutions of Linear Systems
2.6.1 General Solutions of Homogenous Linear Systems
2.6.2 General Solutions of Non-homogenous Linear Systems
2.7 Exercises
Chapter 3 Eigenvalues and Eigenveetors
3.1 Eigenvalues and Eigenvectors
3.1.1 Definition of Eigenvalues and Eigenvectors
3.1.2 Properties of Eigenvalues and Eigenvectors
3.2 Diagonalization o{ Square Matrices
3.2.1 Similar Matrix
3.2.2 Diagonalization of Square Matrices
3.3 Orthonormal Basis
3.3.1 Inner Product of Vectors
3.3.2 Orthogonal Set and Basis
3.3.3 Gram-Schmidt Orthogonalization Process
3.3.4 Orthogonal Matrix
3.4 Diagonalization of Real Symmetric Matrices
3.4.1 Properties of Eigenvalues of Real Symmetric Matrices
3.5 Exercises
Chapter 4 Quadratic Form
4.1 Real Quadratic Form and Its Matrix
4.2 Diagonal Form of Quadratic Form
4.3 Diagonal Form of Real Quadratic Form
4.3.1 Changing Quadratic Form into Diagonal Form by Orthogonal Transformation
4.3.2 Changing Quadratic Form into Diagonal Form by the Method of Completing the Square
4.4 Canonical Form of Real Quadratic Form
4.5 Positive Definite Quadratic Form and Matrices
4.6 Exercises
References
展开全部
书友推荐
- >
随园食单
随园食单
¥21.1¥48.0 - >
月亮虎
月亮虎
¥14.4¥48.0 - >
名家带你读鲁迅:朝花夕拾
名家带你读鲁迅:朝花夕拾
¥16.3¥21.0 - >
诗经-先民的歌唱
诗经-先民的歌唱
¥13.5¥39.8 - >
烟与镜
烟与镜
¥14.4¥48.0 - >
上帝之肋:男人的真实旅程
上帝之肋:男人的真实旅程
¥19.3¥35.0 - >
中国历史的瞬间
中国历史的瞬间
¥16.7¥38.0 - >
伯纳黛特,你要去哪(2021新版)
伯纳黛特,你要去哪(2021新版)
¥21.9¥49.8
本类畅销
-
食品添加剂
¥33.5¥45 -
VB语言程序设计
¥29.9¥39.8 -
C语言程序设计习题与实验指导
¥9.1¥18 -
地下建筑结构-(第三版)-(赠课件)
¥49.4¥55 -
模具制图
¥37.8¥49 -
工程机械结构认知
¥10.5¥22