扫一扫
关注中图网
官方微博
本类五星书更多>
-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
抽象发展方程非局部问题的可解性及其应用 版权信息
- ISBN:9787030570529
- 条形码:9787030570529 ; 978-7-03-057052-9
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
抽象发展方程非局部问题的可解性及其应用 内容简介
陈鹏玉、李永祥、张旭萍著的《抽象发展方程非局部问题的可解性及其应用(英文版)》系统介绍了研究抽象发展方程非局部问题的基本思想、基本方法。通过阅读本书可以尽快的将初学者引入抽象发展方程非局部问题的研究领域,并接触到这一领域的研究前沿。此外,本书的研究工作对非线性分析与抽象空间微分方程理论及算子半群理论的结合有巨大的推动作用。
抽象发展方程非局部问题的可解性及其应用 目录
Contents
Chapter 1 Introduction and Background 1
1.1 Nonlocal problem of abstract evolution equations 1
1.2 Monotone iterative method based on lower and upper solutions 5
1.3 Impulsive di.erential equations 7
1.4 Fractional di.erential equations 8
1.5 Non-autonomous evulution equations 10
1.6 Nonlocal evolution equations with delay 12
Reference 15
Chapter 2 Basic Definitions and Theorems 24
2.1 Theory of operator semigroups 24
2.2 Measure of noncompactness 27
2.3 Fixed point theorems 28
2.4 Cone and partial order 30
2.5 Basic properties of fractional integral and derivative 31
Reference 33
Chapter 3 Strong Solutions for Nonlocal Evolution Equations 36
3.1 Existence and uniqueness of strong solutions for semilinear evolution equations with nonlocal initial conditions 36
3.2 Regularity for evolution equations with nonlocal initial conditions on infinite interval 51
3.3 Asymptotic stability of strong solutions for evolution equations with nonlocal initial conditions 64
3.4 Notes 72
Reference 73
Chapter 4 Monotone Iterative Method Based on Lower and Upper Solutions 75
4.1 Monotone iterative technique for semilinear evolution equations with nonlocal initial conditions 76
4.2 Perturbation method for nonlocal evolution equations with instantaneous impulses 89
4.2.1 Initial value problem of linear evolution equations 91
4.2.2 g is compact in PC(J;E) 92
4.2.3 g is continuous in PC(J;E) 96
4.2.4 The case of lower and upper solutions do not exist 97
4.2.5 Applications 99
4.3 Iterative method for a new class of evolution equations with non-
instantaneous impulses 102
4.3.1 Linear evolution equation with non-instantaneous impulses 104
4.3.2 T( ) and gk are compact 105
4.3.3 T( ) is not compact, gk is compact 113
4.3.4 T( ) and gk are not compact 115
4.3.5 Applications 120
4.4 Notes 124
Reference 125
Chapter 5 Nonlocal Evolution Equation of Fractional Order 128
5.1 Fractional evolution equations with nonlocal conditions and noncompact semigroup 129
5.2 Nonlocal problem for fractional evolution equations of mixed type 141
5.2.1 Existence of mild solutions 142
5.2.2 Existence of positive mild solutions 151
5.3 Fractional evolution equations with mixed monotone nonlocal conditions 155
5.3.1 T(t) is compact for t > 0 157
5.3.2 T(t)(t > 0) is a C0-semigroup 162
5.3.3 Existence of mild solution 165
5.3.4 Applications 169
5.4 Notes 172
Reference 172
Chapter 6 Fractional Non-autonomous Evolution Equations 175
6.1 Fractional non-autonomous evolution equation with nonlocal conditions 176
6.2 Application 194
6.3 Notes and comments 196
Reference 198
Chapter 7 Nonlocal Evolution Equation with Delay 200
7.1 Existence of solutions for delay evolution equations with nonlocal
conditions 201
7.1.1 Existence results under the situation that g is Lipschitz continuous 203
7.1.2 Existence results under the situation that g is compact 210
7.1.3 An example 213
7.2 Neutral delay evolution equations with mixed nonlocal plus local initial conditions 214
7.2.1 Existence of mild solutions 216
7.2.2 The regularity of solutions 224
7.2.3 An example 229
7.3 Fractional retarded evolution equations subjected to mixed nonlocal plus local initial conditions 233
7.3.1 Existence of mild solutions 234
7.3.2 Existence of positive mild solutions 243
7.3.3 An example 245
7.4 Notes 247
Reference 248
Index 251
Chapter 1 Introduction and Background 1
1.1 Nonlocal problem of abstract evolution equations 1
1.2 Monotone iterative method based on lower and upper solutions 5
1.3 Impulsive di.erential equations 7
1.4 Fractional di.erential equations 8
1.5 Non-autonomous evulution equations 10
1.6 Nonlocal evolution equations with delay 12
Reference 15
Chapter 2 Basic Definitions and Theorems 24
2.1 Theory of operator semigroups 24
2.2 Measure of noncompactness 27
2.3 Fixed point theorems 28
2.4 Cone and partial order 30
2.5 Basic properties of fractional integral and derivative 31
Reference 33
Chapter 3 Strong Solutions for Nonlocal Evolution Equations 36
3.1 Existence and uniqueness of strong solutions for semilinear evolution equations with nonlocal initial conditions 36
3.2 Regularity for evolution equations with nonlocal initial conditions on infinite interval 51
3.3 Asymptotic stability of strong solutions for evolution equations with nonlocal initial conditions 64
3.4 Notes 72
Reference 73
Chapter 4 Monotone Iterative Method Based on Lower and Upper Solutions 75
4.1 Monotone iterative technique for semilinear evolution equations with nonlocal initial conditions 76
4.2 Perturbation method for nonlocal evolution equations with instantaneous impulses 89
4.2.1 Initial value problem of linear evolution equations 91
4.2.2 g is compact in PC(J;E) 92
4.2.3 g is continuous in PC(J;E) 96
4.2.4 The case of lower and upper solutions do not exist 97
4.2.5 Applications 99
4.3 Iterative method for a new class of evolution equations with non-
instantaneous impulses 102
4.3.1 Linear evolution equation with non-instantaneous impulses 104
4.3.2 T( ) and gk are compact 105
4.3.3 T( ) is not compact, gk is compact 113
4.3.4 T( ) and gk are not compact 115
4.3.5 Applications 120
4.4 Notes 124
Reference 125
Chapter 5 Nonlocal Evolution Equation of Fractional Order 128
5.1 Fractional evolution equations with nonlocal conditions and noncompact semigroup 129
5.2 Nonlocal problem for fractional evolution equations of mixed type 141
5.2.1 Existence of mild solutions 142
5.2.2 Existence of positive mild solutions 151
5.3 Fractional evolution equations with mixed monotone nonlocal conditions 155
5.3.1 T(t) is compact for t > 0 157
5.3.2 T(t)(t > 0) is a C0-semigroup 162
5.3.3 Existence of mild solution 165
5.3.4 Applications 169
5.4 Notes 172
Reference 172
Chapter 6 Fractional Non-autonomous Evolution Equations 175
6.1 Fractional non-autonomous evolution equation with nonlocal conditions 176
6.2 Application 194
6.3 Notes and comments 196
Reference 198
Chapter 7 Nonlocal Evolution Equation with Delay 200
7.1 Existence of solutions for delay evolution equations with nonlocal
conditions 201
7.1.1 Existence results under the situation that g is Lipschitz continuous 203
7.1.2 Existence results under the situation that g is compact 210
7.1.3 An example 213
7.2 Neutral delay evolution equations with mixed nonlocal plus local initial conditions 214
7.2.1 Existence of mild solutions 216
7.2.2 The regularity of solutions 224
7.2.3 An example 229
7.3 Fractional retarded evolution equations subjected to mixed nonlocal plus local initial conditions 233
7.3.1 Existence of mild solutions 234
7.3.2 Existence of positive mild solutions 243
7.3.3 An example 245
7.4 Notes 247
Reference 248
Index 251
展开全部
书友推荐
本类畅销
-
从一到无穷大
¥27.3¥46 -
数学的魅力;初等数学概念演绎
¥12.5¥22 -
Sobolev空间与变分原理
¥23¥58 -
4.23文创礼盒A款--“作家言我精神状态”
¥42.3¥206 -
4.23文创礼盒B款--“作家言我精神状态”
¥42.3¥206 -
一句顶一万句 (印签版)
¥40.4¥68