图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
高维非线性系统的隐藏吸引子-25

高维非线性系统的隐藏吸引子-25

出版社:科学出版社出版时间:2018-01-01
开本: 32开 页数: 198
本类榜单:工业技术销量榜
中 图 价:¥64.1(7.2折) 定价  ¥89.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

高维非线性系统的隐藏吸引子-25 版权信息

高维非线性系统的隐藏吸引子-25 内容简介

真实的动力系统几乎都含有各种各样的非线性因素,诸如机械系统中的间隙、干摩擦,结构系统中的材料弹塑性、构件大变形,控制系统中的元器件饱和特性、变结构控制策略等。实践中,人们经常试图用线性模型来替代实际的非线性系统,以方便地获得其动力学行为的某种逼近。然而,被忽略的非线性因素常常会在分析和计算中引起无法接受的误差,使得线性逼近成为一场徒劳。特别对于系统的长时间历程动力学问题,有时即使略去很微弱的非线性因素,也会在分析和计算中出现本质性的错误。 因此,人们很早就开始关注非线性系统的动力学问题。早期研究可追溯到1673年Huygens对单摆大幅摆动非等时性的观察。从19世纪末起,Poincare,Lyapunov,Birkhoff,Andronov,Arnold和Smale等数学家和力学家相继对非线性动力系统的理论进行了奠基性研究,Duffing,vanderPol,Lorenz,Ueda等物理学家和工程师则在实验和数值模拟中获得了许多启示性发现。他们的杰出贡献相辅相成,形成了分岔、混沌、分形的理论框架,使非线性动力学在20世纪70年代成为一门重要的前沿学科,并促进了非线性科学的形成和发展。 近20年来,非线性动力学在理论和应用两个方面均取得了很大进展。这促使越来越多的学者基于非线性动力学观点来思考问题,采用非线性动力学理论和方法,对工程科学、生命科学、社会科学等领域中的非线性系统建立数学模型,预测其长期的动力学行为,揭示内在的规律性,提出改善系统品质的控制策略。一系列成功的实践使人们认识到:许多过去无法解决的难题源于系统的非线性,而解决难题的关键在于对问题所呈现的分岔、混沌、分形、孤立子等复杂非线性动力学现象具有正确的认识和理解。 近年来,非线性动力学理论和方法正从低维向高维乃至无穷维发展。伴随着计算机代数、数值模拟和图形技术的进步,非线性动力学所处理的问题规模和难度不断提高,已逐步接近一些实际系统。在工程科学界,以往研究人员对于非线性问题绕道而行的现象正在发生变化。人们不仅力求深入分析非线性对系统动力学的影响,使系统和产品的动态设计、加工、运行与控制满足日益提高的运行速度和精度需求,而且开始探索利用分岔、混沌等非线性现象造福人类。

高维非线性系统的隐藏吸引子-25 目录

Contents Preface Chapter 1 Basic geometrical point of view of dynamical systems 1 1.1 Self-excited and hidden attractors 1 1.2 Hidden oscillations in Hilbert's 16th problem and applied models 3 1.3 The main contents of this book 6 Reference 9 Chapter 2 Hidden attractors without equilibria 12 2.1 Hidden chaos without equilibria in three-dimensional autonomous system 12 2.1.1 The proposed system 13 2.1.2 Forming mechanism of the new chaotic attractors 17 2.1.3 Conclusion 22 2.2 Hidden hyperchaos without equilibria in four-dimensional autonomous system 23 2.2.1 The hyperchaotic system from generalized di.usionless Lorenz equations 25 2.2.2 Dynamical structure of the proposed hyperchaotic system 29 2.3 Conclusion 35 Reference 35 Chapter 3 Hidden hyperchaotic attractors in a modi-ed Lorenz-Stenflo system 39 3.1 Introduction 39 3.2 The hyperchaotic system from Lorenz-Stenflo system 40 3.2.1 Formulation of the system 40 3.2.2 Hidden hyperchaotic attractors with only one stable equilibrium 42 3.2.3 Non-equivalence with existing hyperchaotic systems 45 3.3 Some basic properties and bifurcation analysis 45 3.3.1 Symmetry and invariance and dissipativity 45 3.3.2 Equilibria and stability 46 3.3.3 Bifurcation analysis 48 3.4 The ultimate bound and positively invariant set 52 3.4.1 Four dimensional hyperelliptic estimate of the ultimate bound and positively invariant set 52 3.4.2 Two dimensional cylindrical estimate of the ultimate bound and positively invariant set 55 3.5 Conclusion 57 Reference 60 Chapter 4 Hidden attractors, multiple limit cycles and boundedness in the generalized 4D Rabinovich system 63 4.1 Introduction 63 4.2 The proposed system and hidden hyperchaos 65 4.2.1 Formulation of the system 65 4.2.2 Hidden hyperchaotic attractors with a unique stable equilibrium 66 4.2.3 Initial conditions and coexisting attractors 69 4.3 Generation of hidden attractors 70 4.4 Local bifurcation in the generalized hyperchaotic Rabinovich system 71 4.4.1 Equilibrium and stability 71 4.4.2 Hopf bifurcation 72 4.5 Boundedness of motion for the hyperchaotic system 76 4.6 Conclusion 79 Reference 80 Chapter 5 On the periodic orbit bifurcating from one single non-hyperbolic equibrium 84 5.1 Introduction 84 5.2 The proposed system and chaotic attractors 85 5.3 The averaging theory for periodic orbits 88 5.4 Statements of the main results 89 5.5 Conclusion 95 Reference 95 Chapter 6 Hidden attractors and dynamical behaviors in an extended Rikitake system 99 6.1 Introduction 99 6.2 Existence of equilibria 100 6.3 Hidden attractors that arise from stable equilibria 102 6.3.1 Coexistence of stable equilibria and hidden attractor 103 6.3.2 Finding hidden attractors by a simple linear transformation 104 6.4 Hopf bifurcation analysis 106 6.5 Dynamics analysis at in-nity 110 6.6 Conclusion 114 Reference 115 Chapter 7 Hidden chaotic regions and complex dynamics in 3D homopolar disc dynamo 118 7.1 Introduction 118 7.2 Description of the self-exciting homopolar disc dynamo and related problems 120 7.3 Study of hidden attractors from a simple linear transformation 125 7.4 Study of hidden attractors from Hopf bifurcation 127 7.4.1 An outline of the Hopf bifurcation methods 127 7.4.2 Hopf bifurcation analysis 129 7.4.3 Hidden attractors and numerical simulations 131 7.4.4 Unstable periodic orbits 131 7.5 Existence of homoclinic orbits 134 7.6 In-nity dynamics by Poincar.e compacti-cation 137 7.7 Conclusion 143 Reference 144 Chapter 8 Hidden hyperchaos and circuit application in 5D homopolar disc dynamo 147 8.1 Introduction 147 8.2 5D hyperchaotic self-exciting homopolar disc dynamo 148 8.3 Hidden attractors and multistability 152 8.3.1 Hidden attractors with two stable equilibria 153 8.3.2 Coexistence of point, periodic, quasi-periodic and hidden chaotic attractors 156 8.4 Electronic circuit implementation of the 5D hyperchaotic system 161 8.5 Conclusion 163 Reference 164 Chapter 9 Bifurcation and circuit realization for delayed system with hidden attractors 168 9.1 Introduction 168 9.2 Hopf bifurcation analysis with multiple delays 170 9.2.1 Stability of equilibrium 171 9.2.2 Existence of Hopf bifurcation with 72 9.2.3 Existence of Hopf bifurcation with 75 9.3 Direction, stability and numerical results of Hopf bifurcation with 77 9.3.1 Direction of Hopf bifurcations and stability of the bifurcating periodic orbits 177 9.3.2 Numerical simulations 186 9.4 Circuit implementation of the multiple time-delay system 190 9.5 Conclusion 192 Reference 193 Index 196
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服