书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
大数据分析:R语言实现-(影印版)

大数据分析:R语言实现-(影印版)

出版社:东南大学出版社出版时间:2017-10-01
开本: 32开 页数: 489
中 图 价:¥30.1(3.2折) 定价  ¥94.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>
买过本商品的人还买了

大数据分析:R语言实现-(影印版) 版权信息

大数据分析:R语言实现-(影印版) 本书特色

数据挖掘技术是当下大数据时代*关键的技术,其应用领域及前景不可估量。R是一款极其优秀的统计分析和数据挖掘软件,本书重点讲述了R的数据挖掘流程、算法包的使用及相关工具的应用,同时结合大量精选的数据挖掘实例对R软件进行深入潜出和全面的介绍,以便读者能深刻理解R的精髓并能快速、高效和灵活地掌握使用R进行数据挖掘的技巧。

大数据分析:R语言实现-(影印版) 内容简介

数据挖掘技术是当下大数据时代*关键的技术,其应用领域及前景不可估量。R是一款极其优秀的统计分析和数据挖掘软件,本书重点讲述了R的数据挖掘流程、算法包的使用及相关工具的应用,同时结合大量精选的数据挖掘实例对R软件进行深入潜出和全面的介绍,以便读者能深刻理解R的精髓并能快速、高效和灵活地掌握使用R进行数据挖掘的技巧。

大数据分析:R语言实现-(影印版) 目录

PrefaceChapter 1: The Era of Big Data Big Data - The monster re-defined Big Data toolbox - dealing with the giant Hadoop - the elephant in the room Databases Hadoop Spark-ed up R- The unsung Big Data hero SummaryChapter 2: Introduction to R Programming Language and Statistical Environment Learning R Revisiting R basics Getting R and RStudio ready Setting the URLs to R repositories R data structures Vectors Scalars Matrices Arrays Data frames Lists Exporting R data objects Applied data science with R Importing data from different formats Exploratory Data Analysis Data aggregations and contingency tables Hypothesis testing and statistical inference Tests of differences Independent t-test example (with power and effect size estimates) ANOVA example Tests of relationships An example of Pearson's r correlations Multiple regression example Data visualization packages SummaryChapter 3: Unleashing the Power of R from Within Traditional limitations of R Out-of-memory data Processing speed To the memory limits and beyond Data transformations and aggregations with the ff and ffbase packages Generalized linear models with the ff and ffbase packages Logistic regression example with ffbase and biglm Expanding memory with the bigmemory package Parallel R From bigmemory to faster computations An apply() example with the big.matrix object A for() loop example with the ffdf object Using apply() and for() loop examples on a data.frame A parallel package example A foreach package example The future of parallel processing in R Utilizing Graphics Processing Units with R Multi-threading with Microsoft R Open distribution Parallel machine learning with H20 and R Boosting R performance with the data.table package and other tools Fast data import and manipulation with the data.table package Data import with data.table Lightning-fast subsets and aggregations on data.table Chaining, more complex aggregations, and pivot tables with data.table Writing better R code SummaryChapter 4: Hadoop and MapReduce Framework for R Hadoop architecture Hadoop Distributed File System MapReduce framework A simple MapReduce word count example Other Hadoop native tools Learning Hadoop A single-node Hadoop in Cloud Deploying Hortonworks Sandbox on Azure A word count example in Hadoop using Java A word count example in Hadoop using the R language RStudio Server on a Linux RedHat/CentOS virtual machine Installing and configuring RHadoop packages HDFS management and MapReduce in R - a word count example HDInsight - a multi-node Hadoop cluster on Azure Creating your first HDInsight cluster Creating a new Resource Group Deploying a Virtual Network Creating a Network Security Group Setting up and configuring an HDInsight cluster Starting the cluster and exploring Ambari Connecting to the HDInsight cluster and installing RStudio Server Adding a new inbound security rule for port 8787 Editing the Virtual Network's public IP address for the head node Smart energy meter readings analysis example - using R on HDInsight cluster SummaryChapter 5: R with Relational Database Management Systems (RDBMSs) Relational Database Management Systems (RDBMSs) A short overview of used RDBMSs Structured Query Language (SQL) SQLite with R Preparing and importing data into a local SQLite database Connecting to SQLite from RStudio MariaDB with R on a Amazon EC2 instance Preparing the EC2 instance and RStudio Server for use Preparing MariaDB and data for use Working with MariaDB from RStudio PostgreSQL with R on Amazon RDS Launching an Amazon RDS database instance Preparing and uploading data to Amazon RDS Remotely querying PostgreSQL on Amazon RDS from RStudio SummaryChapter 6: R with Non-Relational (NoSQL) Databases Introduction to NoSQL databases Review of leading non-relational databases MongoDB with R Introduction to MongoDB MongoDB data models Installing MongoDB with R on Amazon EC2 Processing Big Data using MongoDB with R Importing data into MongoDB and basic MongoDB commands MongoDB with R using the rmongodb package MongoDB with R using the RMongo package MongoDB with R using the mongolite package HBase with R Azure HDInsight with HBase and RStudio Server Importing the data to HDFS and HBase Reading and querying HBase using the rhbase package SummaryChapter 7: Faster than Hadoop - Spark with R Spark for Big Data analytics Spark with R on a multi-node HDInsight cluster Launching HDInsight with Spark and R/RStudio Reading the data into HDFS and Hive Getting the data into HDFS Importing data from HDFS to Hive Bay Area Bike Share analysis using SparkR SummaryChapter 8: Machine Learning Methods for Big Data in R What is machine learning? Supervised and unsupervised machine learning methods Classification and clustering algorithms Machine learning methods with R Big Data machine learning tools GLM example with Spark and R on the HDInsight cluster Preparing the Spark cluster and reading the data from HDFS Logistic regression in Spark with R Naive Bayes with H20 on Hadoop with R Running an H2O instance on Hadoop with R Reading and exploring the data in H2O Naive Bayes on H2O with R Neural Networks with H2O on Hadoop with R How do Neural Networks work? Running Deep Learning models on H20 SummaryChapter 9: The Future of R - Big, Fast, and Smart Data The current state of Big Data analytics with R Out-of-memory data on a single machine Faster data processing with R Hadoop with R Spark with R R with databases Machine learning with R The future of R Big Data Fast data Smart data Where to go next SummaryIndex
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服