书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
Python机器学习-(影印版)

Python机器学习-(影印版)

出版社:东南大学出版社出版时间:2017-04-01
开本: 32开 页数: 425
中 图 价:¥29.6(3.4折) 定价  ¥87.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口
有划线标记、光盘等附件不全详细品相说明>>
本类五星书更多>

Python机器学习-(影印版) 版权信息

Python机器学习-(影印版) 本书特色

机器学习和预测分析正在改变商业和其他组织的运作模式。
由塞巴斯蒂安·拉什卡*的《Python机器学习( 影印版)(英文版)》将带你进入预测分析的世界,通过演示告诉你为什么Python是世界**的数据科学语言之一。如果你想询问*深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括 scikit-learn、 Theano和Keras在内的大量功能强大的Python库、操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些*重要的问题。

Python机器学习-(影印版) 内容简介

本书将带你进入预测分析的世界,通过演示告诉你为什么Python是世界**的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括 scikit-learn、Theano和Keras在内的大量功能强大的Python库,操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些*重要的问题。

Python机器学习-(影印版) 目录

Preface Chapter 1: Givin Com uters the Ability to Learn from DataBuilding intelligent machines to transform data into knowledgeThe three different types of machine learningMaking predictions about the future with supervised learningClassification for predicting class labelsRegression for predicting continuous outcomesSolving interactive problems with reinforcement learningDiscovering hidden structures with unsupervised learningFinding subgroups with clusteringDimensionality reduction for data compressionAn introduction to the basic terminology and notationsA roadmap for building machine learning systemsPreprocessing - getting data into shapeTraining and selecting a predictive modelEvaluating models and predicting unseen data instancesUsing Python for machine learningInstalling Python packagesSummary Chapter 2: Training Machine Learning Algorithms for ClassificationArtificial neurons - a brief glimpse into the early historyof machine learningImplementing a perceptron learning algorithm in PythonTraining a perceptron model on the Iris datasetAdaptive linear neurons and the convergence of learningMinimizing cost functions with gradient descentImplementing an Adaptive Linear Neuron in PythonLarge scale machine learning and stochastic gradient descentSummary Chapter 3: A Tour of Machine Learning Classifiers Using Scikit-learnChoosing a classification algorithmFirst steps with scikit-learnTraining a perceptron via scikit-learnModeling class probabilities via logistic regressionLogistic regression intuition and conditional probabilitiesLearning the weights of the logistic cost functionTraining a logistic regression model with scikit-learnTackling overfitting via regularizationMaximum margin classification with support vector machinesMaximum margin intuitionDealing with the nonlinearly separablecase using slack variablesAlternative implementations in scikit-learnSolving nonlinear problems using a kernel SMMUsing the kernel trick to find separating hyperplanes in higherdimensional spaceDecision tree learningMaximizing information gain - getting the most bang for the buckBuilding a decision treeCombining weak to strong learners via random forestsK-nearest neighbors - a lazy learning algorithmSummary Chapter 4: Building Good Training Sets - Data PreprocessingDealing with missing dataEliminating samples or features with missing valuesImputing missing valuesUnderstanding the scikit-learn estimator APIHandling categorical dataMapping ordinal featuresEncoding class labelsPerforming one-hot encoding on nominal featuresPartitioning a dataset in training and test setsBringing features onto the same scaleSelecting meaningful featuresSparse solutions with L1 regularizationSequential feature selection algorithmsAssessing feature importance with random forestsSummary Chapter 5: Com~ Data via Di~ ReductionUnsupervised dimensionality reduction via principalcomponent analysisTotal and explained varianceFeature transformationPrincipal component analysis in scikit-learnSupervised data compression via linear discriminant analysisComputing the scatter matricesSelecting linear discriminants for the new feature subspaceProjecting samples onto the new feature spaceLDA via scikit-learnUsing kernel principal component analysis for nonlinear mappingsKernel functions and the kernel trickImplementing a kernel principal component analysis in PythonExample 1 - separating half-moon shapesExample 2 - separating concentric circlesProjecting new data pointsKernel principal component analysis in scikit-learnSummary Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuni~Streamlining workflows with pipelinesLoading the Breast Cancer Wisconsin datasetCombining transformers and estimators in a pipelineUsing k-fold cross-validation to assess model performanceThe holdout methodK-fold cross-validationDebugging algorithms with learning and validation curvesDiagnosing bias and variance problems with learning curvesAddressing overfitting and underfitting with validation curvesFine-tuning machine learning models via grid searchTuning hyperparameters via grid searchAlgorithm selection with nested cross-validationLooking at different performance evaluation metricsReading a confusion matrixOptimizing the precision and recall of a classification modelPlotting a receiver operating characteristicThe scoring metrics for multiclass classificationSummary Chapter 7: Combining Different Models for Ensemble LearningLearning with ensemblesImplementing a simple majority vote classifierCombining different algorithms for classification with majority voteEvaluating and tuning the ensemble classifierBagging - building an ensemble of classifiers frombootstrap samplesLeveraging weak learners via adaptive boostingSummary Chapter 8: Applying Machine Learning to Sentiment AnalysisObtaining the IMDb movie review datasetIntroducing the bag-of-words modelTransforming words into feature vectorsAssessing word relevancy via term frequency-inversedocument frequencyCleaning text dataProcessing documents into tokensTraining a logistic regression model for document classificationWorking with bigger data - online algorithms andout-of-core learningSummary Chapter 9: Embedding a Machine Learning Model into a Web ApplicationSerializing fitted scikit-learn estimatorsSetting up a SQLite database for data storageDeveloping a web application with FlaskOur first Flask web applicationForm validation and renderingTurning the movie classifier into a web applicationDeploying the web application to a public sewerUpdating the movie review classifierSummary Chapter 10: Predicting Continuous Target Variables with R_Re_gression AnalysisIntroducing a simple linear regression modelExploring the Housing DatasetVisualizing the important characteristics of a datasetImplementing an ordinary least squares linear regression modelSolving regression for regression parameters with gradient descentEstimating the coefficient of a regression model via scikit-learnFitting a robust regression model using RANSACEvaluating the performance of linear regression modelsUsing regularized methods for regressionTurning a linear regression model into a curve - polynomialregressionModeling nonlinear relationships in the Housing DatasetDealing with nonlinear relationships using random forestsDecision tree regressionRandom forest regressionSummary Chapter 11: Working with Unlabeled Data- Cluste~Grouping objects by similarity using k-meansK-means Hard versus soft clusteringUsing the elbow method to find the optimal number of clustersQuantifying the quality of clustering via silhouette plotsOrganizing clusters as a hierarchical treePerforming hierarchical clustering on a distance matrixAttaching dendrograms to a heat mapApplying agglomerative clustering via scikit-learnLocating regions of high density via DBSCANSummary Chapter 12: Training Artificial Neural Networks for Image RecognitionModeling complex functions with artificial neural networksSingle-layer neural network recapIntroducing the multi-layer neural network architectureActivating a neural network via forward propagationClassifying handwritten digitsObtaining the MNIST datasetImplementing a multi-layer perceptronTraining an artificial neural networkComputing the logistic cost functionTraining neural networks via backpropagationDeveloping your intuition for backpropagationDebugging neural networks with gradient checkingConvergence in neural networksOther neural network architecturesConvolutional Neural NetworksRecurrent Neural NetworksA few last words about neural network implementationSummary Chapter 13: Parallelizing Neural Network Training with TheanoBuilding, compiling, and running expressions with TheanoWhat is Theano?First steps with TheanoConfiguring TheanoWorking with array structuresWrapping things up - a linear regression exampleChoosing activation functions for feedforward neural networksLogistic function recapEstimating probabilities in multi-class classification via thesoftmax functionBroadening the output spectrum by using a hyperbolic tangentTraining neural networks efficiently using KerasSummary Index
展开全部
商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服