超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

不再提示
关闭
图书盲袋,以书为“药”
欢迎光临中图网 请 | 注册
> >>
Hadoop金融大数据分析

Hadoop金融大数据分析

出版社:电子工业出版社出版时间:2017-05-01
开本: 32开 页数: 176
本类榜单:管理销量榜
中 图 价:¥35.4(6.0折) 定价  ¥59.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

Hadoop金融大数据分析 版权信息

  • ISBN:9787121310515
  • 条形码:9787121310515 ; 978-7-121-31051-5
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

Hadoop金融大数据分析 本书特色

在互联网 时代,数据是炙手可热的重要资源,网络使用基础的提升,数据流量增大,用户需求多样化和多变对架构设计提出严峻考验,而Hadoop为快速响应用户需求提供了重要技术支撑。作者Rajiv Tiwari从事数据研究近15年,在Hadoop应用方面有许多实战经验,他通过实际案例帮助读者学习如何借助Hadoop来处理巨大数据信息,对于开发者、分析师、架构师、管理者等都具有很好的指导。

Hadoop金融大数据分析 内容简介

你将从本书中得到什么?
了解大数据和Hadoop基础,包括实际的金融使用案例。
了解基于Hadoop的金融项目的阐述和解决方案、大数据监管,以及如何保持Hadoop的势头。
在Hadoop平台上开发一系列从小规模到大规模的数据项目的解决方案。
了解如何从云上掌握大数据。
在当前的实际业务情况下,在企业级管理上扩大现有平台。

Hadoop金融大数据分析 目录

目 录
第 1章 大数据回顾. .......... 1 大数据是什么 ........ 1 数据量 ............ 2 数据速度 .......... 2 数据类型 .......... 3 大数据技术的演 ...... 3 过去 ................... 3 现在 .................... 4 未来 ................ 5 大数据愿景 ............ 5 存储 .................. 6 NoSQL ............ 6 NoSQL数据库类型 ....... 7 资源管理 ........... 7 数据治理 ............ 8 批量计算 ............ 8 实时计算 ............. 8 数据整合工具 ........... 9 机器学习 ........... 9 商务智能和可视化 ......... 9 大数据相关的职业 ........ 10 Hadoop架构 ..............11 HDFS集群 ............. 12 MapReduce V1 ........ 14 MapReduce V2——YARN ......... 15 Hadoop生态圈简介 ...... 18 驯服大数据 .... 18 Hadoop——英雄 ......... 19 HDFS——Hadoop分布式系统 ............ 19 Hadoop版本 .... 23 发行版——本地部署 .......... 25 发行版——云端 ................. 27 总结 .............................. 28第 2章 金融服务中的大数据.................. 29 各个行业的大数据使用情况 ......................... 29 卫生保健 ............................. 30 人类科学 ............................. 30 电信 ..................................... 31 在线零售商 ......................... 31 为什么金融部门需要大数据 .........31 金融部门的大数据应用案例 .........34 HDFS上的数据归档 ......... 34 监管 ..................................... 35 欺诈检测 .............................. 35 交易数据 .............................. 36 风险管理 ............................. 36 客户行为预测 ...................... 36 情感分析——非结构化 ..... 36 其他应用案例 ..................... 37 金融大数据的演进过程 ........ 37 应该如何学习金融大数据 .... 41 把你的数据上传到 HDFS上 .... 41 从 HDFS上查询数据 ........ 42 在 Hadoop上的 SQL............. 43 实时 ..................................... 44 数据治理和运营 ................. 44 ETL工具 .............................. 45 数据分析和商业智能 ......... 45 金融大数据的实现 ................ 46 关键挑战 ............................. 46 克服挑战 .............................. 47 总结 ........................................ 50第 3章 在云端使用 Hadoop........ 51 大数据云的故事 .................... 51 原因 ...................................... 52 时机 ...................................... 53 收获 ..................................... 54 项目细节——在云中进行风险模拟 .... 54 解决方案 ............................. 55 现实世界 ............................. 55 目标世界 ............................. 57 数据转换 ............................. 60 数据分析 ............................. 62 总结 ........................................ 63
第 4章 使用 Hadoop进行数据迁移. ............. 65 项目细节——归档你的交易数据 ................. 65 解决方案 ............................. 67 项目**阶段——分裂交易数据到数据仓库和 Hadoop ......... 68 项目第二阶段——完成数据从关系型数据仓库到 Hadoop的迁移 ..... 77 总结 ......................................... 83
第 5章 入门. .............................. 85 项目详细信息——风险和监管报告 ............. 86 解决方案 .............................. 87 现实世界 ............................. 87 目标世界 ............................. 88 数据收集 ............................. 89 数据转换 ............................. 97 数据分析 ............................112 总结 .......................................116
第 6章 变得有经验. ....... 117 实时大数据 ...........................117 项目细节——识别欺诈交易 ....................119 解决方案 ........................... 120 现实世界 ............................... 120 目标世界 ............................ 120 马尔科夫链模型执行——批处理模式 ............... 121 数据收集 ............................. 126 数据转换 ........................... 128 总结 .......................... 132
第 7章 深入扩展 Hadoop的企业级应用................ 133 扩展开来——实际上的水平 ..................... 134 更多的大数据使用案例 ................................. 135 使用案例——再谈欺诈问题 ................. 136 解决方案 ........................................... 136 使用案例——用户投诉 ........................ 137 解决方案 ........................................ 137 使用案例——算法交易 ................... 137 解决方案 ................ 138 使用案例——外汇交易 .................................. 138 解决方案...................... 138 使用案例——基于社交媒体的交易数据 ......... 139 解决方案 ........................................ 139 使用案例——非大数据 ................... 140 解决方案 ............................. 140 数据湖 .................................. 140 Lambda架构 ........................ 143 大数据管理 .......................... 144 Apache Falcon概览 ......... 146 安全性 .................................. 147 总结 ...................................... 149第 8章 Hadoop的快速增长..................... 151 Hadoop发行版的升级周期 .................. 151 *佳实践和标准 ...................................... 154 环境 ............................................... 154 与 BI和 ETL工具的集成 ................ 155 提示 ............................................. 155 新的趋势 ................................... 157 总结 ................ 158
展开全部

Hadoop金融大数据分析 作者简介

王小宁,中国人民大学统计学院14级硕士、16级博士,统计之都副主编,中国人民大学数据挖掘中心分布式计算负责人,中国人民大学中国调查与数据中心研究员,研究兴趣包括统计机器学习、缺失数据处理和数据流抽样。 Rajiv Tiwari 是一位有着超过 15年经验的自由大数据架构师,他的研究方向包括大数据、数据分析、数据管理、数据架构、数据清洗 /数据整合、数据仓库,以及银行和其他金融组织中的数据智能等。
他毕业于瓦拉纳西印度理工学院( IIT)电子工程专业,在英国工作了 10年有余,大部分时间居住在英国金融城——伦敦。从 2010年起, Rajiv 就开始使用 Hadoop,当时银行部门使用 Hadoop 的还很少。他目前正在帮助 1级投资银行( Tier 1 Investment Bank)在 Hadoop平台上实施一个大型风险分析项目。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服