书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
高维数据统计学-方法.理论和应用

高维数据统计学-方法.理论和应用

出版社:世界图书出版公司出版时间:2016-05-01
开本: 32开 页数: 556
本类榜单:自然科学销量榜
中 图 价:¥81.7(8.6折) 定价  ¥95.0 登录后可看到会员价
暂时缺货 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>
买过本商品的人还买了

高维数据统计学-方法.理论和应用 版权信息

高维数据统计学-方法.理论和应用 本书特色

peter bühlmann在ethz是高维统计、因果推断方面的知名专家。《高维数据统计学》统计学的前沿之作。这本书所针对的高维数据,是理论研究的热点,在实际中也有着广泛的应用。这本书重点阐述了lasso和其他l1方法的变体,也有boosting等内容。

高维数据统计学-方法.理论和应用 内容简介

Peter Bühlmann在ETHZ是高维统计、因果推断方面的知名专家。《高维数据统计学》统计学的前沿之作。这本书所针对的高维数据,是理论研究的热点,在实际中也有着广泛的应用。这本书重点阐述了Lasso和其他L1方法的变体,也有boosting等内容。

高维数据统计学-方法.理论和应用 目录

1 Introduction 1.1 The framework 1.2 The possibilities and challenges 1.3 About the book 1.3.1 Organization of the book 1.4 Some examples 1.4.1 Prediction and biomarker discovery in genomics2 Lasso for linear models 2.1 Organization of the chapter 2.2 Introduction and preliminaries 2.2.1 The Lasso estimator 2.3 Orthonormal design 2.4 Prediction 2.4.1 Practical aspects about the Lasso for prediction 2.4.2 Some results from asymptotic theory 2.5 Variable screening and -norms 2.5.1 Tuning parameter selection for variable screening 2.5.2 Motif regression for DNA binding sites 2.6 Variable selection 2.6.1 Neighborhood stability and irrepresentable condition 2.7 Key properties and corresponding assumptions: a summary 2.8 The adaptive Lasso: a two-stage procedure 2.8.1 An illustration: simulated data and motif regression 2.8.2 Orthonormal design 2.8.3 The adaptive Lasso: variable selection under weak conditions 2.8.4 Computation 2.8.5 Multi-step adaptive Lasso 2.8.6 Non-convex penalty functions 2.9 Thresholding the Lasso 2.10 The relaxed Lasso 2.11 Degrees of freedom of the Lasso 2.12 Path-following algorithms 2.12.1 Coordinatewise optimization and shooting algorithms 2.13 Elastic net: an extension Problems3 Generalized linear models and the Lasso 3.1 Organization of the chapter 3.2 Introduction and preliminaries 3.2.1 The Lasso estimator: penalizing the negative log-likelihood. 3.3 Important examples of generalized linear models 3.3.1 Binary response variable and logistic regression 3.3.2 Poisson regression 3.3.3 Multi-category response variable and multinomial distribution Problems4 The group Lasso 4.1 Organization of the chapter 4.2 Introduction and preliminaries 4.2.1 The group Lasso penalty 4.3 Factor variables as covariates 4.3.1 Prediction of splice sites in DNA sequences 4.4 Properties of the group Lasso for generalized linear models 4.5 The generalized group Lasso penalty 4.5.1 Groupwise prediction penalty and parametrization invariance 4.6 The adaptive group Lasso 4.7 Algorithms for the group Lasso 4.7.1 Block coordinate descent 4.7.2 Block coordinate gradient descent Problems5 Additive models and many smooth univariate functions 5.1 Organization of the chapter 5.2 Introduction and preliminaries 5.2.1 Penalized maximum likelihood for additive models 5.3 The sparsity-smoothness penalty 5.3.1 Orthogonal basis and diagonal smoothing matrices 5.3.2 Natural cubic splines and Sobolev spaces 5.3.3 Computation 5.4 A sparsity-smoothness penalty of group Lasso type 5.4.1 Computational algorithm 5.4.2 Alternative approaches 5.5 Numerical examples 5.5.1 Simulated example…… 6 Theory for the lasso7 Variable selection with the lasso8 Theory for -penalty procedures9 Non-convex loss functions and -regularization10 Stable solutions11 P-values for linear models and beyond12 Boosting and greedy algorithms14 Probability and moment inequalitiesAuthor indexIndexReferences
展开全部

高维数据统计学-方法.理论和应用 作者简介

Peter Bühlmann(P.布尔曼,瑞士),Sara van de Geer(S.冯.吉尔,瑞士)在ETHZ是高维统计、因果推断方面的知名专家。《高维数据统计学》统计学的前沿之作。

商品评论(0条)
暂无评论……
书友推荐
编辑推荐
返回顶部
中图网
在线客服