欢迎光临中图网 请 | 注册
> >>
多体物理数学基础:原理和方法

多体物理数学基础:原理和方法

作者:诺尔廷
出版社:世界图书出版公司出版时间:2015-07-01
开本: 32开 页数: 612
本类榜单:自然科学销量榜
中 图 价:¥81.7(8.6折) 定价  ¥95.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

多体物理数学基础:原理和方法 版权信息

多体物理数学基础:原理和方法 本书特色

该教材讲述多粒子体系物理,尤其是那些以关联效应为主的。该书利用现代研究方法研究这些体系,并且通过大量合适的练习演示了它们的应用。该书以辅导教材的形式书写,深受多体理论学习者并*终在这个领域工作的人的追捧。书中的练习,连同评估学习程度的全解,帮助读者加深对多粒子体系主要内容的理解。

多体物理数学基础:原理和方法 内容简介

该教材讲述多粒子体系物理,尤其是那些以关联效应为主的。该书利用现代研究方法研究这些体系,并且通过大量合适的练习演示了它们的应用。该书以辅导教材的形式书写,深受多体理论学习者并*终在这个领域工作的人的追捧。书中的练习,连同评估学习程度的全解,帮助读者加深对多粒子体系主要内容的理解。

多体物理数学基础:原理和方法 目录

1 Second Quantisation1.1 Identical Particles1.2 The \"Continuous\" Fock Representation1.3 The \"Discrete\" Fock Representation1.4 Exercises1.5 Self-Examination Questions2 Many-Body Model Systems2.1 Crystal Electrons2.1.1 Non-interacting Bloch Electrons2.1.2 The Jellium Model2.1.3 The Hubbard Model2.1.4 Exercises2.2 Lattice Vibrations2.2.1 The Harmonic Approximation2.2.2 The Phonon Gas2.2.3 Exercises2.3 The Electron-Phonon Interaction2.3.1 The Hamiltonian2.3.2 The Effective Electron-Electron Interaction2.3.3 Exercises2.4 Spin Waves2.4.1 Classification of Magnetic Solids2.4.2 Model Concepts2.4.3 Magnons2.4.4 The Spin-Wave Approximation2.4.5 Exercises2.5 Self-Examination Questions3 Green's Funetions3.1 Preliminary Considerations3.1.1 Representations3.1.2 Linear-Response Theory3.1.3 The Magnetic Susceptibility3.1.4 The Electrical Conductivity3.1.5 The Dielectric Function3.1.6 Spectroscopies, Spectral Density3.1.7 Exercises3.2 Double-Time Green's Functions3.2.1 Equations of Motion3.2.2 Spectral Representations3.2.3 The Spectral Theorem3.2.4 Exact Expressions3.2.5 The Kramers-Kronig Relations3.2.6 Exercises3.3 First Applications3.3.1 Non-Interacting Bloch Electrons3.3.2 Free Spin Waves3.3.3 The Two-Spin Problem3.3.4 Exercises3.4 The Quasi-Particle Concept3.4.1 One-Electron Green's Functions3.4.2 The Electronic Self-Energy3.4.3 Quasi-Particles3.4.4 Quasi-Particle Density of States3.4.5 Internal Energy3.4.6 Exercises3.5 Self-Examination Questions4 Systems of Interacting Particles4.1 Electrons in Solids4.1.1 The Limiting Case of an Infinitely Narrow Band4.1.2 The Hartree-Fock Approximation4.1.3 Electronic Correlations4.1.4 The Interpolation Method4.1.5 The Method of Moments4.1.6 The Exactly Half-filled Band4.1.7 Exercises4.2 Collective Electronic Excitations4.2.1 Charge Screening (Thomas-Fermi Approximation)4.2.2 Charge Density Waves, Plasmons4.2.3 Spin Density Waves, Magnons4.2.4 Exercises4.3 Elementary Excitations in Disordered Alloys4.3.1 Formulation of the Problem4.3.2 The Effective-Medium Method4.3.3 The Coherent Potential Approximation4.3.4 Diagrammatic Methods4.3.5 Applications4.4 Spin Systems4.4.1 The Tyablikow Approximation4.4.2 \"Renormalised\" Spin Waves4.4.3 Exercises4.5 The Electron-Magnon Interaction4.5.1 Magnetic 4f Systems (s-f-Model)4.5.2 The Infinitely Narrow Band4.5.3 The Alloy Analogy4.5.4 The Magnetic Polaron4.5.5 Exercises4.6 Self-Examination Questions5 Perturbation Theory (T = 0)5.1 Causal Green's Functions5.I.1 \"Conventional\" Time-dependent Perturbation Theory5.1.2 \"Switching on\" the Interaction Adiabatically5.1.3 Causal Green's Functions5.1.4 Exercises5.2 Wick's Theorem5.2.1 The Normal Product5.2.2 Wick's Theorem5.2.3 Exercises5.3 Feynman Diagrams5.3.1 Perturbation Expansion for the Vacuum Amplitude5.3.2 The Linked-Cluster Theorem5.3.3 The Principal Theorem of Connected Diagrams5.3.4 Exercises5.4 Single-Particle Green's Functions5.4.1 Diagrammatic Perturbation Expansions5.4.2 The Dyson Equation5.4.3 Exercises5.5 The Ground-State Energy of the Electron Gas (Jellium Model)5.5.1 First-Order Perturbation Theory5.5.2 Second-Order Perturbation Theory5.5.3 The Correlation Energy5.6 Diagrammatic Partial Sums5.6.1 The Polarisation Propagator5.6.2 Effective Interactions5.6.3 Vertex Function5.6.4 Exercises5.7 Self-Examination Questions6 Perturbation Theory at Finite Temperatures6.1 The Matsubara Method6.1.1 Matsubara Functions6.1.2 The Grand Canonical Partition Function6.1.3 The Single-Particle Matsubara Function6.2 Diagrammatic Perturbation Theory6.2.1 Wick's Theorem6.2.2 Diagram Analysis of the Grand-Canonical Partition Function6.2.3 Ring Diagrams6.2.4 The Single-Particle Matsubara Function6.3 Self-Examination QuestionsSolutions of the ExercisesIndex
展开全部

多体物理数学基础:原理和方法 作者简介

Wolfgang Nolting(W.诺尔廷,德国)是国际知名学者,在物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
返回顶部
中图网
在线客服