-
>
宇宙、量子和人类心灵
-
>
考研数学专题练1200题
-
>
希格斯:“上帝粒子”的发明与发现
-
>
神农架叠层石:10多亿年前远古海洋微生物建造的大堡礁
-
>
二十四史天文志校注(上中下)
-
>
声音简史
-
>
浪漫地理学:追寻崇高景观
物理学家用的数学方法-第7版 版权信息
- ISBN:9787510070754
- 条形码:9787510070754 ; 978-7-5100-7075-4
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 所属分类:>>
物理学家用的数学方法-第7版 本书特色
阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头**书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
物理学家用的数学方法-第7版 内容简介
阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头**书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
物理学家用的数学方法-第7版 目录
1 mathematical preliminaries
1.1 infiniteseries
1.2 series offunctions
1.3 binomial theorem
1.4 mathematical induction
1.5 operations on series expansions of functions
1.6 some important series
1.7 vectors
1.8 complex numbers and functions
1.9 derivatives andextrema
1.10 evaluation oflntegrals
1.1 i dirac delta function
additionaireadings
2 determinants and matrices
2.1 determinants
2.2 matrices
additionai readings
3 vector analysis
3.1 review ofbasic properties
3.2 vectors in 3-d space
3.3 coordinate transformations
3.4 rotations in ir3
3.5 differential vector operators
3.6 differential vector operators: further properties
3.7 vectorlntegration
3.8 integral theorems
3.9 potentiaitheory
3.10 curvilinear coordinates
additionaireadings
4 tensors and differential forms
4.1 tensoranalysis
4.2 pseudotensors, dual tensors
4.3 tensors in general coordinates
4.4 jacobians
4.5 differentialforms
4.6 differentiatingforms
4.7 integratingforms
additionalreadings
5 vector spaces
5.1 vectors in function spaces
5.2 gram-schmidt orthogonalization
5.3 operators
5.4 selfadjointoperators
5.5 unitaty operators
5.6 transformations of operators
5.7 invariants
5.8 summary-vector space notation
additionaireadings
6 eigenvalue problems
6.1 eigenvalueequations
6.2 matrix eigenvalue problems
6.3 hermitian eigenvalue problems
6.4 hermitian matrix diagonalization
6.5 normaimatrices
additionalreadings
7 ordinary difterential equations
7.1 introduction
7.2 first-orderequations
7.3 odes with constant coefficients
7.4 second-order linear odes
7.5 series solutions-frobenius ' method
7.6 othersolutions
7.7 inhomogeneous linear odes
7.8 nonlinear differential equations
additional readings
8 sturm-liouville theory
8.1 introduction
8.2 hermitian operators
8.3 ode eigenvalue problems
8.4 variation method
8.5 summary, eigenvalue problems
additional readings
9 partial differential equations
9.1 introduction
9.2 first-order equations
9.3 second-order equations
9.4 separation of variables
9.5 laplace and poisson equations
9.6 wave equation
9.7 heat-flow, or diffusion pde
9.8 summary
additional readings
10 green's functions
10.1 one-dimensional problems
10.2 problems in two and three dimensions
additional readings
11 complex variable theory
11.1 complex variables and functions
11.2 cauchy-riemann conditions
11.3 cauchy' s integral theorem
11.4 cauchy' s integral formula
11.5 laurent expansion
11.6 singularities
11.7 calculus of residues
11.8 evaluation of definite integrals
11.9 evaluation of sums
11.10 miscellaneous topics
additional readings
12 further topics in analysis
12.1 orthogonal polynomials
12.2 bernoulli numbers
12.3 euler-maclaurin integration formula
12.4 dirichlet series
12.5 infinite products
12.6 asymptotic series
12.7 method of steepest descents
12.8 dispersion relations
additional readings
13 gamma function
13.1 definitions, properties
13.2 digamma and polygamma functions
13.3 the beta function
13.4 stirling's series
13.5 riemann zeta function
13.6 other related functions
additional readings
14 bessel functions
14.1 bessel functions of the first kind, ,iv (x)
14.2 orthogonality
14.3 neumann functions, bessel functions of the second kind
14.4 hankel functions
14.5 modified bessel functions, iv (x) and kv (x)
14.6 asymptotic expansions
14.7 spherical bessel functions
additional readings
15 legendre functions
15.1 legendre polynomials
15.2 orthogonality
15.3 physical interpretation of generating function
15.4 associated legendre equation
15.5 spherical harmonics
15.6 legendre functions of the second kind
additional readings
16 angular momentum
16.1 angular momentum operators
16.2 angular momentum coupling
16.3 spherical tensors
16.4 vector spherical harmonics
additional readings
17 group theory
17.1 introduction to group theory
17.2 representation of groups
17.3 symmetry and physics
17.4 discrete groups
17.5 direct products
17.6 symmetric group
17.7 continuous groups
17.8 lorentz group
17.9 lorentz covariance of maxwell's equations
17.10 space groups
additional readings
18 more special functions
18.1 hermite functions
18.2 applications of hermite functions
18.3 laguerre functions
18.4 chebyshev polynomials
18.5 hypergeometric functions
18.6 confluent hypergeometric functions
18.7 dilogarithm
18.8 elliptic integrals
additional readings
19 fourier series
19.1 general properties
19.2 applications of fourier series
19.3 gibbs phenomenon
additional readings
20 integral transforms
20.1 introduction
20.2 fourier transform
20.3 properties of fourier transforms
20.4 fourier convolution theorem
20.5 signal-processing applications
20.6 discrete fourier transform
20.7 laplace transforms
20.8 properties of laplace transforms
20.9 laplace convolution theorem
20.10 inverse laplace transform
additional readings
21 integral equations
21.1 introduction
21.2 some special methods
21.3 neumann series
21.4 hilbert-schmidt theory
additional readings
17.4 discrete groups
17.5 direct products
17.6 symmetric group
17.7 continuous groups
17.8 lorentz group
17.9 lorentz covariance of maxwell's equations
17.10 space groups
additional readings
18 more special functions
18.1 hermite functions
18.2 applications of hermite functions
18.3 laguerre functions
18.4 chebyshev polynomials
18.5 hypergeometric functions
18.6 confluent hypergeometric functions
18.7 dilogarithm
18.8 elliptic integrals
additional readings
19 fourier series
19.1 general properties
19.2 applications of fourier series
19.3 gibbs phenomenon
additional readings
20 integral transforms
20.1 introduction
20.2 fourier transform
20.3 properties of fourier transforms
20.4 fourier convolution theorem
20.5 signal-processing applications
20.6 discrete fourier transform
20.7 laplace transforms
20.8 properties of laplace transforms
20.9 laplace convolution theorem
20.10 inverse laplace transform
additional readings
21 integral equations
21.1 introduction
21.2 some special methods
21.3 neumann series
21.4 hilbert-schmidt theory
additional readings
22 calculus of variations
22.1 euler equation
22.2 more general variations
22.3 constrained minima/maxima
22.4 variation with constraints
additional readings
23 probability and statistics
23.1 probability: definitions, simple properties
23.2 random variables
23.3 binomial distribution
23.4 poisson distribution
23.5 gauss' normal distribution
23.6 transformations of random variables
23.7 statistics
additional readings
index
物理学家用的数学方法-第7版 作者简介
Arfken, Weber, Harris是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
- >
朝闻道
朝闻道
¥8.8¥23.8 - >
龙榆生:词曲概论/大家小书
龙榆生:词曲概论/大家小书
¥13.0¥24.0 - >
有舍有得是人生
有舍有得是人生
¥17.1¥45.0 - >
自卑与超越
自卑与超越
¥12.7¥39.8 - >
诗经-先民的歌唱
诗经-先民的歌唱
¥13.5¥39.8 - >
莉莉和章鱼
莉莉和章鱼
¥13.4¥42.0 - >
苦雨斋序跋文-周作人自编集
苦雨斋序跋文-周作人自编集
¥5.8¥16.0 - >
回忆爱玛侬
回忆爱玛侬
¥23.0¥32.8
-
物理学之美-插图珍藏版
¥27.6¥69 -
为了人人晓得相对论
¥6.9¥13.5 -
世纪幽灵-走近量子纠缠
¥12¥28 -
量子宇宙:一切可能发生的正在发生
¥16.1¥32.8 -
数学物理方程
¥12.9¥26 -
物理学家说文析理
¥20¥50