书馨卡帮你省薪 2024个人购书报告 2024中图网年度报告
欢迎光临中图网 请 | 注册
> >>
大数据挑战与NoSQL数据库技术

大数据挑战与NoSQL数据库技术

出版社:电子工业出版社出版时间:2013-04-01
开本: 16开 页数: 423
中 图 价:¥43.5(5.5折) 定价  ¥79.0 登录后可看到会员价
加入购物车 收藏
运费6元,满39元免运费
?新疆、西藏除外
本类五星书更多>

大数据挑战与NoSQL数据库技术 版权信息

大数据挑战与NoSQL数据库技术 本书特色

  本书从理论、系统、应用三个方面详细讲述了大数据的技术知识,并针对nosql数据库技术做了深入的分享,是学习大数据技术的地图、指南手册。帮助读者跳出迷局,厘清思路,系统地做好相关知识储备,拥抱大数据时代!

大数据挑战与NoSQL数据库技术 内容简介

  本书共分为三部分。理论篇重点介绍大数据时代下数据处理的基本理论及相关处理技术,并引入nosql数据库;系统篇主要介绍了各种类型nosql数据库基本知识;应用篇对国内外知名公司在利用nosql数据库在处理海量数据方面的应用做了阐述。本书对大数据时代面临的挑战,以及nosql数据库的基本知识做了清晰的阐述,有助于帮助读者整理思路,了解需求,并更有针对性、有选择的深入学习相关知识。

大数据挑战与NoSQL数据库技术 目录


第1章 概论 
1.1 引子 
1.2 大数据挑战 
1.3 大数据的存储和管理 
1.3.1 并行数据库 
1.3.2 nosql数据管理系统 
1.3.3 newsql数据管理系统 
1.3.4 云数据管理 
1.4 大数据的处理和分析 
1.5 小结 
参考文献 
理 论 篇
第2章 数据一致性理论 
2.1 cap理论 
2.2 数据一致性模型 
2.3 acid与base 
2.4 数据一致性实现技术 
2.4.1 quorum系统nrw策略 
2.4.2 两阶段提交协议 
2.4.3 时间戳策略 
2.4.4 paxos 
2.4.5 向量时钟 
2.5 小结 
参考文献 
第3章 数据存储模型 
3.1 总论 
3.2 键值存储 
3.2.1 redis 
3.2.2 dynamo 
3.3 列式存储 
3.3.1 bigtable 
3.3.2 cassandra与hbase 
3.4 文档存储 
3.4.1 mongodb 
3.4.2 couchdb 
3.5 图形存储 
3.5.1 neo4j 
3.5.2 graphdb 
3.6 本章小结 
参考文献 
第4章 数据分区与放置策略 
4.1 分区的意义 
4.1.1 为什么要分区 
4.1.2 分区的优点 
4.2 范围分区 
4.3 列表分区 
4.4 哈希分区 
4.5 三种分区的比较 
4.6 放置策略 
4.6.1 一致性哈希算法 
4.6.2 容错性与可扩展性分析 
4.6.3 虚拟节点 
4.7 小结 
参考文献 
第5章 海量数据处理方法 
5.1 mapreduce简介 
5.2 mapreduce数据流 
5.3 mapreduce数据处理 
5.3.1 提交作业 
5.3.2 初始化作业 
5.3.3 分配任务 
5.3.4 执行任务 
5.3.5 更新任务执行进度和状态 
5.3.6 完成作业 
5.4 dryad简介 
5.4.1 dfs cosmos介绍 
5.4.2 dryad执行引擎 
5.4.3 dryadlinq解释引擎 
5.4.4 dryadlinq编程 
5.5 dryad数据处理步骤 
5.6 mapreduce vs dryad 
5.7 小结 
参考文献 
第6章 数据复制与容错技术 
6.1 海量数据复制的作用和代价 
6.2 海量数据复制的策略 
6.2.1 dynamo的数据库复制策略 
6.2.2 couchdb的复制策略 
6.2.3 pnuts的复制策略 
6.3 海量数据的故障发现与处理 
6.3.1 dynamo的数据库的故障发现与处理 
6.3.2 couchdb的故障发现与处理 
6.3.3 pnuts的故障发现与处理 
6.4 小结 
参考文献 
第7章 数据压缩技术 
7.1 数据压缩原理 
7.1.1 数据压缩的定义 
7.1.2 数据为什么可以压缩 
7.1.3 数据压缩分类 
7.2 传统压缩技术[1] 
7.2.1 霍夫曼编码 
7.2.2 lz77算法 
7.3 海量数据带来的3v挑战 
7.4 oracle混合列压缩 
7.4.1 仓库压缩 
7.4.2 存档压缩 
7.5 google数据压缩技术 
7.5.1 寻找长的重复串 
7.5.2 压缩算法 
7.6 hadoop压缩技术 
7.6.1 lzo简介 
7.6.2 lzo原理[5] 
7.7 小结 
参考文献 
第8章 缓存技术 
8.1 分布式缓存简介 
8.1.1 分布式缓存的产生 
8.1.2 分布式缓存的应用 
8.1.3 分布式缓存的性能 
8.1.4 衡量可用性的标准 
8.2 分布式缓存的内部机制 
8.2.1 生命期机制 
8.2.2 一致性机制 
8.2.3 直读与直写机制 
8.2.4 查询机制 
8.2.5 事件触发机制 
8.3 分布式缓存的拓扑结构 
8.3.1 复制式拓扑 
8.3.2 分割式拓扑 
8.3.3 客户端缓存拓扑 
8.4 小结 
参考文献 
系 统 篇
第9章 key-value数据库 
9.1 key-value模型综述 
9.2 redis 
9.2.1 redis概述 
9.2.2 redis下载与安装 
9.2.3 redis入门操作 
9.2.4 redis在业内的应用 
9.3 voldemort 
9.3.1 voldemort概述 
9.3.2 voldemort下载与安装 
9.3.3 voldemort配置 
9.3.4 voldemort开发介绍[3] 
9.4 小结 
参考文献 
第10章 column-oriented数据库 
10.1 column-oriented数据库简介 
10.2 bigtable数据库 
10.2.1 bigtable数据库简介 
10.2.2 bigtable数据模型 
10.2.3 bigtable基础架构 
10.3 hypertable数据库 
10.3.1 hypertable简介 
10.3.2 hypertable安装 
10.3.3 hypertable架构 
10.3.4 基本概念和原理 
10.3.5 hypertable的查询 
10.4 cassandra数据库 
10.4.1 cassandra简介 
10.4.2 cassandra配置 
10.4.3 cassandra数据库的连接 
10.4.4 cassandra集群机制 
10.4.5 cassandra的读/写机制 
10.5 小结 
参考文献 
第11章 文档数据库 
11.1 文档数据库简介 
11.2 couchdb数据库 
11.2.1 couchdb简介 
11.2.2 couchdb安装 
11.2.3 couchdb入门 
11.2.4 couchdb查询 
11.2.5 couchdb的存储结构 
11.2.6 sql和couchdb 
11.2.7 分布式环境中的couchdb 
11.3 mongodb数据库 
11.3.1 mongodb简介 
11.3.2 mongodb的安装 
11.3.3 mongodb入门 
11.3.4 mongodb索引 
11.3.5 sql与mongodb 
11.3.6 mapreduce与mongodb 
11.3.7 mongodb与couchdb对比 
11.4 小结 
参考文献 
第12章 图存数据库 
12.1 图存数据库的由来及基本概念 
12.1.1 图存数据库的由来 
12.1.2 图存数据库的基本概念 
12.2 neo4j图存数据库 
12.2.1 neo4j简介 
12.2.2 neo4j使用教程 
12.2.3 分布式neo4j——neo4j ha 
12.2.4 neo4j工作机制及优缺点浅析 
12.3 graphdb 
12.3.1 graphdb简介 
12.3.2 graphdb的整体架构 
12.3.3 graphdb的数据模型 
12.3.4 graphdb的安装 
12.3.5 graphdb的使用 
12.4 orientdb 
12.4.1 背景 
12.4.2 orientdb是什么 
12.4.3 orientdb的原理及相关技术 
12.4.4 windows下orientdb的安装与使用 
12.4.5 相关web应用 
12.5 三种图存数据库的比较 
12.5.1 特征矩阵 
12.5.2 分布式模式及应用比较 
12.6 小结 
参考文献 
第13章 基于hadoop的数据管理系统 
13.1 hadoop简介 
13.2 hbase 
13.2.1 hbase体系结构 
13.2.2 hbase数据模型 
13.2.3 hbase的安装和使用 
13.2.4 hbase与rdbms 
13.3 pig 
13.3.1 pigr的安装和使用 
13.3.2 pig latin语言 
13.3.3 pig实例 
 
展开全部

大数据挑战与NoSQL数据库技术 作者简介

陆嘉恒,中国人民大学教授,博士生导师。2006年毕业于新加坡国立大学计算机科学系,获博士学位;2006-2008年在美国加利福尼亚大学尔湾分校(UniversityofCalifornia,Irvine)进行博士后研究;2008年加入中国人民大学,2012年破格晋升为教授。主要研究领域包括数据库技术和云计算技术。先后在SIGMOD、VLDB、ICDE、WWW等国际重要会议和期刊上发表数据库方向的论文40多篇,主编多本云计算和大数据的教材和著作。

商品评论(0条)
暂无评论……
书友推荐
本类畅销
编辑推荐
返回顶部
中图网
在线客服