读书月攻略拿走直接抄!
欢迎光临中图网 请 | 注册
> >>
交换调和分析-I-总论,古典问题

包邮 交换调和分析-I-总论,古典问题

出版社:科学出版社出版时间:2009-01-30
所属丛书: 国外数学名著系列
开本: 16开 页数: 268
读者评分:4.7分3条评论
本类榜单:自然科学销量榜
中 图 价:¥44.2(6.5折) 定价  ¥68.0 登录后可看到会员价
暂时缺货 收藏
开年大促, 全场包邮
?新疆、西藏除外
本类五星书更多>

交换调和分析-I-总论,古典问题 版权信息

  • ISBN:9787030234902
  • 条形码:9787030234902 ; 978-7-03-023490-2
  • 装帧:简裝本
  • 册数:暂无
  • 重量:暂无
  • 所属分类:>>

交换调和分析-I-总论,古典问题 本书特色

《国外数学名著系列(续1)(影印版)47:交换调和分析1(总论,古典问题)》由科学出版社出版。

交换调和分析-I-总论,古典问题 内容简介

the first volume in this subseries of the encyclopaedia 1s meant to familiarize the reader with the discipline commutative harmonic analysis.
 the first article is a thorough introduction,moving from fourier series to the fourier transform,and on to the group theoretic point ofview.numerous examples illustrate the connections to differential and integral equations,approximation theory,nutuber theory, probability theory and physics.the development of fourier analysis is discussed in a brief historical essay.
  the second article focuses on some of the classical problems of fourier series;it’s a"mini—zygmund”for the beginner.the third article is the most modern of the three,concentrating on singular integral operators.it also contains an introduction to calderon-zygmund theory.

交换调和分析-I-总论,古典问题 目录

introduction
chapter 1.a short course of fourier analysis of periodic functions
 §1.translation-invariant operators
  1.1.the set up
  1.2.object ofinvestigation
  1.3.convolution
  1.4.general form oft.i.operators
 §2.harmonics.basic principles of harmonic analysis on the circle
  2.1.eigenvectors and eigenfunctions of t-i.operators
  2.2.basic principles of harmonic analysis on the circle t
  2.3.smoothing ofdistributions
  2.4.weierstrass’theorem
  2.5.fourier coefficients.the main theorem of harmonic analysis on the circle
  2.6.spectral characteristics of the classes * and *
  2.7.l2-theory of fourier series
  2.8.wirtinger’s inequality
  2.9.the lsoperimetric inequality.(hurwitz’proof)
  2.10.harmonic analysis on the torus
chapter 2.harmonic analysis in rd
 §1.preliminaries on distributions in rd
  1.1.distributions in rd
 §2.from the circle to the line.fourier transform in rd(definition)
  2.1.inversion formula(an euristic derivation)
  2.2.a proofofthe inversion formula
  2.3.another proof
  2.4.fourier transform in rd(definition)
 §3.convolution(definition).
  3.1.difficulties of harmonic analysis in rd
  3.2.convolution of distributions(construction)
  3.3.examples
  3.4.convolution operators
 §4.convolution operators as object of study(examples)
  4.1.linear ditierential and difference operators.
  4.2.integral operators with a kernel depending on difference of arguments.
  4.3.integration and differentiation of a fractional order.
  4.4.hilbert transform
  4.5.cauchy’s problem and convolution operators
  4.6.fundamental solutions.the newtonian potential
  4.7 distribution of the sum of independent random variables
  4.8 convolution operators in approximation theory
  4.9.the impulse response function ofa system.
 §5.means of investigation—fourier transform(s′-theory and l2-theory
  5.1.spaces s and s′
 5.2.s′-theory of fourier transform.preliminary discussion
  5.3.s′-theory of fourier transform(basic facts)
  5.4.l2 theory.
  5.5.“x-representation”and“ξ-representation”
 §6.fourier transform in examples
  6.1.some formulae
  6.2.fourier transform and a linear change of variable
  6.3 digression:heisenberg uncertainty principle
  6.4.radially-symmetric distributions
  6.5 harmonic analysis of periodic functions
  6.6.the poisson summation formula
  6.7.minkowski’s theorem on integral solutions of systems of linear inequalities.
  6.8.jacobi’s identity for the θ-function
  6.9.evaluation ofthe gaussian sum.
 §7.fourier transform in action.spectral analysis of convolution operators
  7.1.symbol
  7.2.construction of fundamental solutions
  7.3.hypoellipticity
  7.4 singular integral operators and pdo
  7.5 the law of large numbers and central limit theorem
  7.6.δ-families and summation of diverging integrals
  7.7.tauberian theorems
  7.8.spectral characteristic of a system.
 ……
chapter3 harmonic analysis on groups
chapter4 a historical survey
chapter5 spectral analysis and spectral synthesis,intrinsic problems
epilogue
bibliographical noes
references
展开全部

交换调和分析-I-总论,古典问题 节选

《国外数学名著系列(续1)(影印版)47:交换调和分析1(总论,古典问题)》主要内容包括:The first volume in this subseries of the Encyclopaedia 1S meant to familiarize the reader with the iscipline Commutative Harmonic AnalysiS.The first article is a thorough introduction,moving from Fourier series to the Fourier transform,and on to the group theoretic point ofview.Numerous examples illustrate the connections to differential and integral equationS,approximation theory,nutuber theory, probability theory and physics.The development of Fourier analysis is discussed in a brief historical essay.The second article focuses on some of the classical problems of Fourier series;it’S a"mini-Zygmund”for the beginner.The third article is the most modern of the three,concentrating on singular integral operators.It also contains an introduction to Calderon-Zygmund theory.

商品评论(3条)
  • 主题:硬皮精装书

    英文原版,纸张质量上乘,印刷清晰,不是太厚的一本书。

    2017/8/15 11:14:23
    读者:lov***(购买过本书)
  • 主题:非常喜欢这套书

    喜欢数学必备

    2017/2/26 15:04:48
    读者:Ril***(购买过本书)
  • 主题:真是太好了

    好书好品,虽然现在看不懂,囤着,慢慢看,或者给后代看

    2016/8/24 20:11:02
    读者:rog***(购买过本书)
书友推荐
本类畅销
浏览历史
编辑推荐
返回顶部
中图网
在线客服